SCHUR-CONVEXITY OF THE EXTENDED MEAN VALUES

FENG QI

ABSTRACT. In this article, the Schur-convexity of the extended mean values
are proved. Consequently, an inequality between the logarithmic mean values

and the identity (exponential) mean values is deduced.

1. INTRODUCTION

It is well-known that, in 1975, the extended mean values E(r, s; z,y) were defined

in [19] by K. B. Stolarsky as follows
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E(0,0;z,y) = Vay, T #y; (4)
E(r,s;z,z) =, T =1;

where x,y > 0 and r,s € R.

For z,y > 0 and ¢t € R, let us define a function g by
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W) tx>7 t#0;

Iny—Inz, t=0.

g(t) = g(t;z,y) =
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It is easy to see that g can be expressed in integral form as

y
gtz y) = / u' ! du, (6)
and
y
g™ (1) :/ (Inw)"u'~" du. (7)
Therefore, in [2, 7, 10, 17], the extended mean values E(r, s;x,y) were represented
in terms of g by
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g(r;@,y)

and
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InE(r,s;z,y) = Da(r 2.)/Or (9)
g(r;z,y)

In 1978, Leach and Sholander [3] showed that E(r,s;z,y) are increasing with

) r=s,x—y#0.

both r and s, or with both = and y. Later, the monotonicities of E have also been
researched by the author and others in [2], [12]-[15] and [17, 18] using different
ideas and simpler approaches.

In 1983 and 1988, Leach and Sholander [4] and Péles [5] respectively solved the
problem of comparison of E; that is, they found necessary and sufficient conditions
for the parameters r, s and u, v in order that E(r, s;z,y) < E(u,v;x,y) be satisfied
for all positive x and y.

The concepts of mean values have been generalized or extended by the author
in [7]-[9] and [11, 12].

Recently, the author verified the logarithmic convexity of E(r, s;x,y) with two

parameters r and s as follows

Theorem A ([10]). For all fized z,y > 0 and s € [0,+00) (or r € [0,+00),
respectively), the extended mean values E(r, s;x,y) are logarithmically concave in
r (or in s, respectively) on [0,+00); For all fized z,y > 0 and s € (—o0,0] (or
r € (—o0, 0], respectively), the extended mean values E(r, s;x,y) are logarithmically

convez in 1 (or in s, respectively) on (—oo,0].
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Definition 1 ([6, p. 75-76]). A function f with n arguments defined on I™ is
Schur-convex on I™ if f(x) < f(y) for each two n-tuples x = (z1,...,2zy,) and
y = (y1,...,Yn) in I" such that < y holds, where I is an interval with nonempty
interior.

The relationship majorization x < y means that

k n n

k
PETEDINL o <Yy, (10)
=1 =1 =1

i=1 —
where 1 <k <n — 1, z; denotes the ith largest component in z.

A function f is Schur-concave if and only if —f is Schur-convex.

In this article, our main purpose is to prove the Schur-convexity of the extended
mean values E(r, s;x,y) with (r,s), and then we obtain the following
Theorem 1. For fized x > 0 and y > 0, the extended mean values E(r,s;z,y)
are Schur-concave on R% and Schur-convez on R with (r,s), where RZ and R%
denote [0,4+00) x [0,+00) and (—o00,0] x (—00,0], the first and third quadrants,
respectively.

Considering (r1,s1) = (0,2r) and (r9,s2) = (r,7) for r # 0, as a direct conse-
quence of Theorem 1, we obtain an inequality between the logarithmic mean values

(2) and the identity (exponential) mean values (3) as follows

Corollary 1. Let xz,y > 0 and x # y. Then, for r > 0, we have

|: 1 y2r _ 2 :l 1/(2r) 1 <xmr ) 1/(z"=y") (11)

?hlny—lnx = el/r y7

For r <0, inequality (11) reverses.

2. LEMMAE

In order to prove Theorem 1, we need the following lemmae.

Lemma 1 ([1]). Let f be a continuous function on I. Then the arithmetic mean

of function f (or the integral arithmetic mean),

1

o(u,v) =

’ t)dt, w#v, wu,ve€l;
u /u 7 (12)
)7

v —
f(r U=,

is Schur-convex (Schur-concave) on I? if and only if f is convex (concave) on I.
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By formula (9) and Lemma 1, it is easy to see that, to prove the Schur-convexity
of the extended mean values E(r, s; x, y) with (r, s), it suffices to verify the convexity

of the function
9 M) 5 9itz,y) o Ogltiz,y) 1

gt) — gltwy) ot gty 4
with respect to ¢, where g(t) = g(t; ,y) is defined by (5) or (6).
Straightforward computation results in
g\ _g"t)gt) — g (1)
(%) - amm )
g\ _ g*(1)g"(t) = 39(t)g' (t)g" (t) + 2[¢' ()]
(55) - P | 1

Lemma 2 ([10]). Ify >« =1, then, fort >0,

Pt 1,y (41 y) — 39t 1, y)g, (51, 9)g) (81, y) + 2[gs (5 1,9)]* <0. (16)

Lemma 3. If y > x =1, then, fort > 0, the function g((t)) is concave.

Proof. This follows from using a combination of formulae (13), (14) and (15) with

Lemma 2 easily. O

3. PROOF OF THEOREM 1

It is evident that E(r, s;x,y) is symmetric with (r, s) since we have E(r, s;z,y) =
E(s,r;z,y).

Combining Lemma 2 with equality (15) shows that the function % is con-
cave on [0, 4+00) with ¢ for y > & = 1. Therefore, from Lemma 1, it follows that the
extended mean values E(r, s; 1, y) are Schur-concave with (r, s) on [0, +00) x [0, +-00)
fory >ax=1.

By standard arguments, we obtain

E(r,s;2,y) = 2E(r,5;1, %), (17)
X

Ty

E(—T,—S;m,y) = m

(18)

Hence, for fixed  and y, the extended mean values E(r, s;x,y) are Schur-concave
with (r, s) on [0, +00) X [0, +00) and Schur-convex with (r, s) on (—o0, 0] x (—o0, 0].

The proof of Theorem 1 is complete.
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