
SCHUR-CONVEXITY OF THE EXTENDED MEAN VALUES

FENG QI

Abstract. In this article, the Schur-convexity of the extended mean values

are proved. Consequently, an inequality between the logarithmic mean values

and the identity (exponential) mean values is deduced.

1. Introduction

It is well-known that, in 1975, the extended mean values E(r, s;x, y) were defined

in [19] by K. B. Stolarsky as follows

E(r, s;x, y) =
[
r

s
· ys − xs

yr − xr

]1/(s−r)

, rs(r − s)(x− y) 6= 0; (1)

E(r, 0;x, y) =
[
1
r
· yr − xr

ln y − lnx

]1/r

, r(x− y) 6= 0; (2)

E(r, r;x, y) =
1

e1/r

(
xxr

yyr

)1/(xr−yr)

, r(x− y) 6= 0; (3)

E(0, 0;x, y) =
√

xy, x 6= y; (4)

E(r, s;x, x) = x, x = y;

where x, y > 0 and r, s ∈ R.

For x, y > 0 and t ∈ R, let us define a function g by

g(t) = g(t;x, y) =


(yt − xt)

t
, t 6= 0;

ln y − lnx, t = 0.

(5)
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It is easy to see that g can be expressed in integral form as

g(t;x, y) =
∫ y

x

ut−1 du, (6)

and

g(n)(t) =
∫ y

x

(lnu)nut−1 du. (7)

Therefore, in [2, 7, 10, 17], the extended mean values E(r, s;x, y) were represented

in terms of g by

E(r, s;x, y) =


(

g(s;x, y)
g(r;x, y)

)1/(s−r)

, (r − s)(x− y) 6= 0;

exp
(

∂g(r;x, y)/∂r

g(r;x, y)

)
, r = s, x− y 6= 0

(8)

and

lnE(r, s;x, y) =


1

s− r

∫ s

r

∂g(t;x, y)/∂t

g(t;x, y)
dt, (r − s)(x− y) 6= 0;

∂g(r;x, y)/∂r

g(r;x, y)
, r = s, x− y 6= 0.

(9)

In 1978, Leach and Sholander [3] showed that E(r, s;x, y) are increasing with

both r and s, or with both x and y. Later, the monotonicities of E have also been

researched by the author and others in [2], [12]–[15] and [17, 18] using different

ideas and simpler approaches.

In 1983 and 1988, Leach and Sholander [4] and Páles [5] respectively solved the

problem of comparison of E; that is, they found necessary and sufficient conditions

for the parameters r, s and u, v in order that E(r, s;x, y) ≤ E(u, v;x, y) be satisfied

for all positive x and y.

The concepts of mean values have been generalized or extended by the author

in [7]–[9] and [11, 12].

Recently, the author verified the logarithmic convexity of E(r, s;x, y) with two

parameters r and s as follows

Theorem A ([10]). For all fixed x, y > 0 and s ∈ [0,+∞) (or r ∈ [0,+∞),

respectively), the extended mean values E(r, s;x, y) are logarithmically concave in

r (or in s, respectively) on [0,+∞); For all fixed x, y > 0 and s ∈ (−∞, 0] (or

r ∈ (−∞, 0], respectively), the extended mean values E(r, s;x, y) are logarithmically

convex in r (or in s, respectively) on (−∞, 0].
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Definition 1 ([6, p. 75–76]). A function f with n arguments defined on In is

Schur-convex on In if f(x) ≤ f(y) for each two n-tuples x = (x1, . . . , xn) and

y = (y1, . . . , yn) in In such that x ≺ y holds, where I is an interval with nonempty

interior.

The relationship majorization x ≺ y means that

k∑
i=1

x[i] ≤
k∑

i=1

y[i],
n∑

i=1

x[i] ≤
n∑

i=1

y[i], (10)

where 1 ≤ k ≤ n− 1, x[i] denotes the ith largest component in x.

A function f is Schur-concave if and only if −f is Schur-convex.

In this article, our main purpose is to prove the Schur-convexity of the extended

mean values E(r, s;x, y) with (r, s), and then we obtain the following

Theorem 1. For fixed x > 0 and y > 0, the extended mean values E(r, s;x, y)

are Schur-concave on R2
+ and Schur-convex on R2

− with (r, s), where R2
+ and R2

−

denote [0,+∞) × [0,+∞) and (−∞, 0] × (−∞, 0], the first and third quadrants,

respectively.

Considering (r1, s1) = (0, 2r) and (r2, s2) = (r, r) for r 6= 0, as a direct conse-

quence of Theorem 1, we obtain an inequality between the logarithmic mean values

(2) and the identity (exponential) mean values (3) as follows

Corollary 1. Let x, y > 0 and x 6= y. Then, for r > 0, we have[
1
2r
· y2r − x2r

ln y − lnx

]1/(2r)

≤ 1
e1/r

(
xxr

yyr

)1/(xr−yr)

. (11)

For r < 0, inequality (11) reverses.

2. Lemmae

In order to prove Theorem 1, we need the following lemmae.

Lemma 1 ([1]). Let f be a continuous function on I. Then the arithmetic mean

of function f (or the integral arithmetic mean),

φ(u, v) =


1

v − u

∫ v

u

f(t) dt, u 6= v, u, v ∈ I;

f(r), u = v,

(12)

is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on I.
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By formula (9) and Lemma 1, it is easy to see that, to prove the Schur-convexity

of the extended mean values E(r, s;x, y) with (r, s), it suffices to verify the convexity

of the function
g′(t)
g(t)

,
g′t(t;x, y)
g(t;x, y)

,
∂g(t;x, y)

∂t
· 1
g(t;x, y)

(13)

with respect to t, where g(t) = g(t;x, y) is defined by (5) or (6).

Straightforward computation results in(
g′(t)
g(t)

)′

=
g′′(t)g(t)− [g′(t)]2

g2(t)
, (14)(

g′(t)
g(t)

)′′

=
g2(t)g′′′(t)− 3g(t)g′(t)g′′(t) + 2[g′(t)]3

g3(t)
. (15)

Lemma 2 ([10]). If y > x = 1, then, for t ≥ 0,

g2(t; 1, y)g′′′t (t; 1, y)− 3g(t; 1, y)g′t(t; 1, y)g′′t (t; 1, y) + 2[g′t(t; 1, y)]3 ≤ 0. (16)

Lemma 3. If y > x = 1, then, for t ≥ 0, the function g′(t)
g(t) is concave.

Proof. This follows from using a combination of formulae (13), (14) and (15) with

Lemma 2 easily. �

3. Proof of Theorem 1

It is evident that E(r, s;x, y) is symmetric with (r, s) since we have E(r, s;x, y) =

E(s, r;x, y).

Combining Lemma 2 with equality (15) shows that the function g′
t(t;1,y)

g(t;1,y) is con-

cave on [0,+∞) with t for y > x = 1. Therefore, from Lemma 1, it follows that the

extended mean values E(r, s; 1, y) are Schur-concave with (r, s) on [0,+∞)×[0,+∞)

for y > x = 1.

By standard arguments, we obtain

E(r, s;x, y) = xE(r, s; 1,
y

x
), (17)

E(−r,−s;x, y) =
xy

E(r, s;x, y)
. (18)

Hence, for fixed x and y, the extended mean values E(r, s;x, y) are Schur-concave

with (r, s) on [0,+∞)× [0,+∞) and Schur-convex with (r, s) on (−∞, 0]× (−∞, 0].

The proof of Theorem 1 is complete.
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