KY FAN INEQUALITY AND BOUNDS FOR DIFFERENCES OF MEANS

PENG GAO

ABSTRACT. We prove an equivalent relation between Ky Fan-typed inequalities and certain bounds
for the differences of means. We also generalize a result of H. Alzer, S. Ruscheweyh and L. Salinas.

1. INTRODUCTION
Let P, ,(x) be the generalized weighted power means: P,.(x) = (3i-; wixf)%, where w; >
0,1 <i<nwith > ,w; =1and x = (21,22, -+ ,2,). Here P, o(x) denotes the limit of P, ,(x)
as r — 07. We shall write P, , for P, ,(x) when there is no risk of confusion.

In this paper, we always assume 0 < 7 < 29 < --- < x,. To any given x we associate
xX'=1—-z1,1—29, -+ ,1—x,) and write A, = P,1,Gy, = Py, H, = P, 1. When 1 —z; > 0 for
all i, we define A, = P, 1(x') and similarly for G, H,,. We also let o, = 321" | wi[z; — A, .

The following counterpart of the arithmetic mean-geometric mean inequality, due to Ky Fan,
was first published in the monograph Inequalities by Beckenbach and Bellman :

Theorem 1.1. For x; € (0,1/2],

(1.1)

with equality holding if and only if x1 = -+ = xp,.
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In this paper we consider the validity of the following additive Ky Fan-typed inequalities(with
x] < xp < 1):

(12) Tl < ‘PT/L,T‘ - P7/1,s < Tn
1—m Pn,r_Pn,s 1 -z,

Note by a change of variables, ©; — 1 — x;, the left-hand side inequality is equivalent to the
right-hand side inequality in . One can deduce(seeﬂgﬂ) theorem from the case r = 1,5 =
0,2, <1/2in , which is a result of H. Alzer. P.Gaoﬂgﬂ later proved the validity of for
r=1,-1<s<1,z,<1/2

What’s worth mentioning is a nice result of P. Mercer, who showed the validity of r = 1,5 =0
in is a consequence of a result of D.I. Cartwright and M.J. Field, who established the validity
of r =1,s =0 for the following bounds for the differences between power means(r > s):

r—s r—s
UnZPn,r*Pn,s>70'n

2xq 2z,
where the constant (r — s)/2 is best possible(see [10]).

We point out that inequalities and do not hold for all » > s. We refer the reader to
the survey article[2] and the references therein for an account of Ky Fan’s inequality and to the
articles ,,, for other interesting refinements and extensions of .

Mercer’s result reveals a close relation between and and it is our main goal in the paper
to prove that the validities of and are equivalent for fixed r and s. As a consequence of

(1.3)
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9 PENG GAO

this result, we will give a characterization of the validity of for r =1 or s = 1. A solution of
an open problem from is also given.

Among numerous sharpenings of Ky Fan’s inequality in the literature, we have the following
inequalities connecting the three classical means(with w; = 1/n here):

Hn n—1 An Gn n An n—1 Hn
(ﬁ) e < (CT’) < (?) H

The right-hand side inequality of (1.4) is due to P.F.Wang and W.L.Wang|14] and the left-hand
side inequality was proved recently by H. Alzer, S. Ruscheweyh and L. Salinas|6]

It is natural to ask whether one can extend the above inequality to the weighted case and by
using the same idea as in ﬂ@], we will show this indeed is true in section

(1.4)

2. THE MAIN THEOREM

Theorem 2.1. For fized r > s, the following inequalities are equivalent:
(i). inequality (1.2) for x, < 1/2; (ii). inequality (1.2)); (iii). inequality (L.3).

Proof. (iii) = (ii) follows from a similar argument as given in [12], (ii) = (i) is trivial, so it suffices
to show (i)= (iii):
Fix r > s, assuming (|1.2)) holds for x,, < 1/2. Without loss of generality, we can assume

x1 < xy,. For a given x = (z1, 9, ,xy), let y = (ex1,€x9,--- ,€ex,). We can choose € small so
that ez, < 1/2 and now apply the right-hand side inequality (1.2) for y, we get

1 —ex
(2.1) (P (%) = Prs(x) > — = (P (') = Pas(y"))

By letting € tend to 0, it is easy to verify the limit of the expression on the right-hand side of
(2.1)) is (r — s)on/2. We can consider the left-hand side of (2.1) by a similar argument and this
completes the proof. N

3. AN APPLICATION OF THEOREM [2.1]
Lemma 3.1. If inequality (L.3)) holds for r > s then 0 <r+ s < 3.
Proof. Let n =2, writew; =1 —¢q,ws =¢q,x1 =1 and o =1+t with t > —1. Let

r—s
2

2
D(t;r,s,q) = > wilwi — Ag)* = Pay + Pa
i=1
For t > 0 then D(t;7,s,q) > 0 implies the validity of the left-hand side inequality of ([1.3]) while
for =1 <t <0, D(t;r,s,q) < 0 implies the validity of the right-hand side inequality of (|1.3).
Using the Taylor series expansion of D(t;7, s, q) around ¢ = 0, it is readily seen that D(0;7,s,q) =
D(l)(O; r,S,q) = D®) (0;7,s,q) = 0. Thus by the Lagrangian remainder term of the Taylor expan-
sion: .
DB (6t;
D(t;r,8,q) = DOt s,q) 3"T’S’Q) 3
with 0 < 0 < 1.
Since

lim D®) (0t;r,s,q) = DB (0;7,5,q)

t—0t
a necessary condition for ([1.3]) to hold is D(3)(0; r,s,q) > 0 for 0 < ¢ < 1. Calculation yields

D& (0;7,5,q) = (r—s)g(g—1)((3—2r —2s)g — (3—7 — 3))
It is easy to check that this is equivalent to 0 < r + s < 3. ]
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Theorem 3.1. If r = 1, inequality (L.3)) holds if and only if —1 < s < 1. If s =1, inequality (|L.3))
holds if and only if 1 <r < 2.

Proof. A result of P.Gaoﬂgﬂ shows the validity of forr=1,-1<s<1,z, <1/2 and a similar
result of hirn shows the validity of for s =1,1 <r < 2,2z, <1/2. Thus it follows from
theorem that holds for r =1,—-1 < s < 1and s =1,1 < r < 2. This proves the “if” part
of the statement and the “only if” part follows from the previous lemma. O

We note here a special case of the above corollary answers an open problem of A. M. Melrcer7
namely, we have shown:

1 1
(3.1) —0oy, > A, — H, > —o,
T T
4. Two LEMMAS

Lemma 4.1. Let x,b,u,v be real numbers with 0 < x < b,u > 1,v > 1, then f(u,v,x,b) <0 where

u—l—v—l+ 1 _l_u—i—v—?
ur+vb  2?(u/x+v/b) = bV (u+v)?
with equality holding if and only if t =b oru=v = 1.

(4.1) flu,v,2,b) = v(xz —b)

Proof. Let x < band u > 1,v > 1. We have
(u—1Db+(wv—1z (u—1)+(v—-1)

flwv,z,0) = U(b_x)(_x(bv—kux)(bu—kvx) b2 (u+v)? )
v(b—x
< M[((u—l)%—(v—l))x—(u—l)b—(v—l)x]
 o(u—1)(b—2)?
T 2 (u+v)? <0
Since b?(u + v)? > (bv + ux)(bu + vx). Thus we conclude that f(u,v,z,b) < 0 for 0 < x < b,u >
1,v>1. [l

Lemma 4.2. Let z,a,b,u,v,s be real numbers with 0 < z < a < bu > 1,v>1lL,u+v > 2 and
0<s<uw, then

u+tv—1 n 1 B
ur +sa+ (v—s)b 22 (u/r+s/a+ (v—25)/b) =z
u+v—2

(4.2) 2 (s(x—a)+ (v—1s)(z—0)) <0

b2(u+w
with equality holding if and only if one of the following cases is true: 1. xt =a=05b; 2. a=b,u =
v=18 s=0u=v=1;4.s=0,z=0b;5 s=0,x=a;6. s=u=v=1.

Proof. Let M = {(s,a) € R?|0 < s < v,x < a < b}. Furthermore, we define H(s,a) as the
expression on the left-hand side of (4.2), where (s,a) € M. It suffices to show H(s,a) < 0. We
denote the absolute minimum of H by m = (sp, ag). If m is an interior point of M, then we obtain

_10H 1 0H . o

T s0a  a—b0os V7600 T 02000z + s/a+ (v — ) /b)2
Hence, m is a boundary point of M, so that we get

m e {(507 x)’ (50’ b)’ (Oa aO)v (U7 aO)}

0 <0

Using lemma [£.1] we obtain
H(so,z) = f(u+ so,v — so,z,b) <0
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H(so,b) = H(0,a0) = f(u,v,z,b) <0
H(v,a90) = f(u,v,7,a0) <0

Thus, we get: if (s,a) € M, then H(s,a) < 0. The conditions for equality can be easily checked by
using lemma [4.1]
O

5. A SHARPENING OF KY FAN’S INEQUALITY

In this section we prove the following theorem:
Theorem 5.1. For 0 <z <--- < x,, ¢ = min{w; }

1—2¢q 1—2¢q
(5.1) WUTL >(1-q)lnA,+qlnH, —InG,> 202 on
1—2¢q 1—2¢q
5.2 ———o0, >InG,, —qglnA, —(1—-q¢)InH,> ———
( ) 256% Op =2 MGy —qll Ay ( Q) N fin= 21% On
with equality holding if and only if g =1/2 or xy = -+ = xy,.

Proof. The proof uses the ideas in []EI] We will prove the right-hand side inequality of (5.1 and
the proofs for other inequalities are similar. Fix 0 < z = z1, z, = b with 1 < z,,, we define
1—2¢q

Qm&m@:41_@mAﬂ+quﬁ—mGn_7ﬁzf

On

where we regard A,, G, H, as functions of x,, = (1, ,x,).
We then have

1%_1—(] qH, 1 1—2¢q

P - _ _A
gn(w% ; Tn—1) w1 O A, :E% 1 x% (xl n)
We want to show g, < 0. Let D = {(x2,--- ,2p,1) E R" 20 <2 <29 < --- < 21 < b}. Let
a=(ag, -+ ,apn—1) € D be the absolute minimum of g,. Next, we show that
(5.3) a=(x,--,x,a, - ,a,b---,b) withz <a<b

where the numbers x, a, and b appear r, s, and t times, respectively, with r,s,t > 0,r+s+t =n—2.
Suppose not, this implies two components of a have different values and are interior points of D.
We denote these values by a; and a;. Partial differentiation leads to

B

(5.4) —+C=0
i
for i = k, [, where
H? 1—-q 1-2¢
B=q—2,C=—
oy a e

Since z +— B/z% 4 C' is strictly monotonic for z > 0, yields ar = a;. This contradicts our
assumption that ag # a;. Thus (5.3]) is valid and it suffices to show g, < 0 for the case n = 2, 3.

When n = 2, by setting 1 = z,x9 = b,w1/q = u,ws/q = v, we can identify g2/q as and
the result follows from lemma .11

When n = 3, by setting z; = x, 23 = a,23 = b,w1/q = u,ws/q = s,ws/q = v — s, we can identify
g3/q as and the result follows from lemma

Thus we have shown that g, = %: < 0 with equality holding if and only if n =10orn =29 =
1/2. By letting x; tend to x2, we have

fn(XmQ) > fn—l(Xn—LQ) > fn—l(Xn—lyq/)
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where x,,_1 = (22, -+ ,x,) with weights w1 + wa, -+ ,wp—1,w, and ¢ = min{ws + we, -+ ,wp}.
Here we have used the following inequality, which is a consequence of (3.I)(see [9]):

1
InA, —InH, > m—zan

n
It then follows by induction that f, > f,—1 > -+ > fo = 0 when ¢ = 1/2 in fo or else
fn > fu_1>---> f1 =0 and this completes the proof. O

We note the above theorem gives a sharpening of Sierpinski’s inequality, originally states for
the unweighted case(w; = 1/n) as:

H' A, <G, <A 'H,
The following corollary gives refinements of ([1.4)):
Corollary 5.1. For0 <z <--- <z, <1, ¢ = min{w;}

/ _ ! _x 2 _ / . /
An(l ‘Z)Hfl a 121> - 14711 qu> An(l Q)an (1—352n)2

e (1=z1)® G, el (1—zn)?
(5.6) (=) T2 2 (—a=y)
AdHY ALH, ™ A,
with equality holding if and only if 11 = x9 = -+ =z, or ¢ =1/2.

Proof. This is a direct consequence of theorem following from a similar argument as in [12]. O

6. CONCLUSION REMARKS

We note that if for z,, < 1/2 one has

x1 )I@<P7/1,T_Prlz,s ( Tn )a
1-— X1 Pn,r — Pn,s
then 8 > 1,a < 1, otherwise by letting € tend to 0 in , we will get contradictions.
It was conjectured that an additive companion of (1.4) is true(see [1]):

1—2x,

(6.1) n(Gn —G)) < (n—1)(A, — A) + H, — H),

In [3], H. Alzer asked if the above conjecture is true, whether there exists a weighted version or
not. Based on what we’ve got in this paper, it is natural to give the following conjecture of the

weighed version of (6.1)):
Conjecture 6.1. For0<z; <--- <z, <1/2, ¢ = min{w;}

(6.2) Gn— G, < (1—q)(An — A)) + q(H, — H})

Recently, H. Alzer, S. Ruscheweyh and L. Salinas[@ asked the following question: What is the
largest number o = a(n) and what is the smallest number 5 = 3(n) such that

a(An — Ay) + (1 —a)(Hy — Hy,) < Gn — G, < B(An — A,) + (1= B)(Hy — Hy)

for all x; € (0,1/2](j =1,--- ,n)?
We note here a < 0, since the left-hand side inequality above can be written as:

(6.3) adp+ (1 —a)H, — G, < adl + (1 - a)H, — G,

By a similar argument as in the proof of theorem replacing (z1,- -+ ,xy,) by (ex1,--- ,€exy)
and letting € tend to 0 in (6.3]), we find that (6.3]) implies:

(6.4) aA,+(1—-—a)H,— G, <0
for any x. If we further let 21 tend to 0 in (6.4]), we get
aA, <0
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which implies o < 0.

REFERENCES

(1997), no. 3, 663-667.
[5] H. Alzer, On an additive analogue of Ky Fan’s inequality, Indag. Math.(N.S.), 8 (1997), 1-6.
[6] H. Alzer, S. Ruscheweyh and L. Salinas, On Ky Fan-type inequalities, Aequationes Math., 62 (2001), 310-320.
[7] E.F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag,Berlin-Gottingen-Heidelberg 1961
[8] D. I. Cartwright and M. J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer.
Math. Soc. 71 (1978), 36-38.
[9] P. Gao, A generalization of Ky Fan’s inequality, Int. J. Math. Math. Sci. 28 (2001), 419-425.
[10] P. Gao, Certain Bounds for the Differences of Means, RGMIA Research Report Collection 5(3), Article 7, 2002.
[11] A.McD. Mercer, Bounds for A-G, A-H, G-H, and a family of inequalities of Ky Fan’s type, using a general
method, J. Math. Anal. Appl., 243 (2000), 163-173.
[12] P. Mercer, A note on Alzer’s refinement of an additive Ky Fan inequality, Math. Inequal. Appl., 3 (2000), 147-148.
[13] W. Sierpinski, On an inequality for arithmetic, geometric and harmonic means, Warsch. Sitzungsber., 2 (1909),
354-358(in Polish).
[14] P. F. Wang and W. L. Wang, A class of inequalities for the symmetric functions, Acta Math. Sinica, 27 (1984),
485-497(in Chinese).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109
E-mail address: penggao@umich.edu



	1. Introduction
	2. The Main Theorem
	3. An Application of Theorem 2.1
	4. Two Lemmas
	5. A sharpening of Ky Fan's inequality
	6. Conclusion Remarks 
	References

