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Abstract

The main task of this paper is to study the links between solutions of Variational In-
equalities and monotonicity of the trajectories of a special kind of Differential Inclusions
(namely “projected differential inclusions”). The case in which the involved operators are
single-valued has been considered in[18], where the connections between solutions of varia-
tional inequalities and stability of the solutions of a “projected differential equation” have
been investigated.
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1 Introduction

The relations of Minty and Stampacchia Variational Inequalities with differentiable optimization
problems have been widely studied. Basically it has been proved that Stampacchia Variational
Inequality (for short, SVI) is a necessary condition for optimality (see e.g. [13]), while Minty
Variational Inequality (for short, MVI) is a sufficient one (see e.g. [7],[14]). Generaliza-
tions of SVI and MVI to point to set maps have been introduced (see e.g. [4], [9]) and the
previous results have been proved also for non differentiable optimization problems (see e.g. [5]).

On the other hand Dynamical Systems (for short, DS) are a classical tool for dealing with a
wide range both of real and mathematical problems. Recently the existence and stability of
equilibria of a (projected) DS have been characterized by means of variational inequalities. In
this context it has been proved that existence of a solution of SVI is equivalent to existence of
an equilibrium, while MVT ensures the stability of equilibria (see for instance [18]).

Therefore, we prove that variational inequalities for point to set maps can be related to differ-
ential inclusions. The main task of this paper is to study the links between solutions of MVI
and monotonicity of the trajectories of a special kind of Differential Inclusions (namely “pro-
jected differential inclusions”). The case in which the involved operators are single-valued has
been considered in [18], where the connections between solutions of variational inequalities and
stability of the solutions of a “projected differential equation” have been investigated.

The paper is organized as follows. In Section 2 we recall the main concepts and results about
Differential Inclusions and Variational Inequalities. Section 3 states the links between existence
of solutions of a Variational Inequality of Minty type and monotonicity of trajectories of a Dif-
ferential Inclusion. Section 4 presents some necessary and sufficient conditions for the existence
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of monotone trajectories of a classical differential equation, when the involved operator is lo-
cally Lipschitz. These results generalize analogous results given in [18], in the case in which
the operator is of class C'. Finally, Section 5 presents an application of the previous results to
generalized gradient inclusions.

2 Preliminaries
2.1 Differential Inclusions
Let K be a closed convex subset of R™.

Theorem 1. [1] We can associate to every x € R™ a unique element wx(x) € K, satisfying:
|l = mxe ()] = min flo = y]].
It is characterized by the following inequality:
(rg(x) —z,mr(x) —y) <0, Vy€eK,
and it is non esrpansive, i.e.:
175 () = 7 ()] < [l = yll.

The map 7 is said the projector (of best approximation) onto K. When K is a linear subspace,
then 7 is linear (see [1]). We set mx(0) = m(K) (i.e. m(K) denotes the element of K with
minimal norm).
We denote by:

C™={veR":(v,a) <0,Va e C}

the (negative) polar cone of the set C' C R", while:
T(C,x) ={veR": v, > v, a, >0, o, — 0, x+ anv, € C}

is Bouligand tangent cone to the set C' at € clC and N(C,z) = [T(C,z)]” stands for the
normal cone to C' at x € clC.

It is known that T'(C,x) and N(C,x) are closed sets. Furthermore, when we consider a closed
convex set K C R™, then T'(K,z) = clcone (K — z) (cone A denotes the cone generated by the
set A), so that both the tangent cone and the normal cone are also convex.

Proposition 1. Let A be a compact convex subset of R™, T be a closed convex cone and N =T~
be its polar cone. Then:

mr(A) € A-N. (1)
The elements of minimal norm are equal:
m(mp(A)) = m(A— N)
and satisfy:

Zi{%<z,m(ﬂT(A))> +[lm(nr(A)]* < 0.
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We recall that, given a map G : K C R"® — 2R" | a differential inclusion is the problem of finding
an absolutely continuous function z(-), defined on an interval [0, T], such that:

{ vt €[0,T], z(t) € K,
for a.a.te€0,7], 2/(t) € G(z(t)).

The solutions of the previous problem are called also ”trajectories” of the differential inclusion.
If z(+) is such that:
YVt e [0,T], =(t) € K,
{ for a.a.t€[0,T], 2'(t) =m(G(z(t)))

then it is called a slow solution of the differential inclusion.

Definition 1. A map F from R" to 28" is said to be upper semicontinuous (u.s.c.) at xg €
R™, when for every open set N containing xo, there exists a neighborhood M of xo such that
F(M)CN.

F' is said to be u.s.c. when it is so at every xrg € R™.

From now on, if not othewise specified we will do the following:

Standing Assumptions

i) K will denote a convex and closed subset of R";
ii) F will denote an u.s.c. map from R” to 28", with nonempty convex and compact values.
We are concerned with the following problem, which is a special case of differential inclusion.

Problem 1. Find an absolutely continuous function z(-) from [0,T] into R™, satisfying:

vt € [0,T], x=(t) € K,

DVI(F,K) { for a.a. t€[0,T], 2'(t) € —F(z(t)) — N(K,z(t))

The previous problem is called a “differential variational inequality” (for short, DVI) [1]. The
following result states the equivalence of DVI(F, K) and a “projected differential inclusion” (for
short, PDI) [1].

Theorem 2. The solutions of Problem 1 are the solutions of:

vt € [0,T], z(t) €K,

PDI(F, K) { for a.a. t€[0,T], 2'(t) € mp(raq) (—F(x(t)),
and conversely.

Remark 1. We recall that when F' is a single-valued operator, then the corresponding “projected
differential equation” and its applications have been studied for instance in [8], [17], [18].

Theorem 3. [1] The slow solutions of DVI(F,K) and PDI(F,K) coincide.
Definition 2. A point * € K is an equilibrium point for DVI(F, K), when:
0€—F(z*)— N(K,z").

We recall the following existence result.
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Theorem 4. a) If K is compact, then there exists an equlibrium point for DVI(F, K).

b) If m(F'(-)) is bounded, then, for any xo € K there exists an absolutely continuous function
x(t) defined on an interval [0,T], such that:

{ z(0) =z, a'(t) € —F(x(t)) — Ng(x(t)) for a.a.t e [0,T]
vVt e [0,T], z(t) e K

We close this section, recalling the notion of monotonicity of a trajectory of DV I(F, K) [1].

Definition 3. Let V' be a function from K to RT. A trajectory z(t) of DVI(F, K) is monotone
(with respect to V') when:

Vit >s, V(x(t)) —V(z(s)) <0.

If the previous inequality holds strictly ¥t > s, then we say that z(t) is strictly monotone w.r.t.
V.

In the following we will be interested in the trajectories of DV I(F, K) which are monotone w.r.t.
the function:

lz — 2|

vm* (Jf') = 5 )

where z* is an equlibrium point of DV I(F, K).

2.2 Variational Inequalities

We consider the following formulations of a variational inequality (see for instance [4], [9], [11]):

Definition 4. A point x* € K is a solution of a Stampacchia Variational Inequality (for short,
SVI) when 36* € F(z*) such that:

SVI(F,K) (£,y—2")>0, Vy € K.

Definition 5. A point x* € K is a solution of a Strong Minty Variational Inequality (for short,
SMVI), when:
SMVI(F,K) ({y—2z")>0,Vy €K, V§ € F(y).

Definition 6. A point x* € K is a solution of a Weak Minty Variational Inequality (for short,
WMVTI), whenVy € K, 3¢ € F(y) such that:

Definition 7. If in Definition 5 (resp. 6), strict inequality holds Yy € K, y # x*, then we say
that x* is a “strict ” solution of SMVI(F, K) (resp. of WMVI(F, K)).

Remark 2. When F is single valued, Definitions 5 and 6 reduce to the classical notion of MV'I.

The classical Minty Lemma (see for instance [16]) relates Minty Variational Inequalities and
Stampacchia Variational Inequalities, when F' is a single valued operator. The following result
gives an extension to the case in which F' is a point-to-set map. We recall first the following
definition (see e.g. [11]).

Definition 8. I is said:
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i) monotone, if for all x,y € K, we have:

Vu € F(z),Vv € F(y) : (v—u,y —x) > 0;

i1) pseudo-monotone (resp. strictly pseudomonotone), if for all x,y € K (resp. for all z,y €
K with y # x) the following implication holds:

Ju e F(z): (u,y —x) >0=Yv € F(y) : (v,y —x) > 0;
(Fue F(z): (u,y—z) >0=Yv e F(y) : (v,;y —z) >0)
i1) quasi-monotone, if for all xz,y € K , we have:

Jue F(x): (u,y—x) >0=VYv e F(y): (v,y—x) > 0.

Remark 3. The following implications are classical:

monotone = pseudomonotone = quasimonotone
fr
strictly pseudomonotone.

Lemma 1. i) Let F be u.s.c. and K be nonempty closed and convex. Any x* € K, which
solves WMV I(F,K), it is a solution of SVI(F,K) as well.

it) If F is a pseudo-monotone map, any solution of SVI(F, K) also solves SMVI(F, K).

i1i) If F is a strictly pseudo-monotone map, any solution of SVI(F, K) is a strict solution of
SMVI(F,K).

Proof:

i) Let z be an arbitrary point in K and consider y = z* + t(z — z*) € K, where ¢t € (0,1).
Since z* solves WMV I(F, K), we have that V¢ € (0,1), 3§ = £(t) € F(z* + t(z — z¥)),
such that:

{€(t),t(z — ™)) = 0,
that is:
{€(t),z —a™) = 0.

Since F' is u.s.c., we get that for any integer n > 0, there exists a number §,, > 0 such
that, for t € (0, d,] it holds:

1
B.

n

F(z* +t(z —z%)) C F(z*) +

Hence, for t € (0,0,], £(t) = f(t) +~(t), where f(t) € F(z*) and y(t) € 1 B. Without loss
of generality we can assume J,, < 1 Vn and we have:

0 <€),z —a") = (f(t),z = 27) + (7(t),z — 27).

Furthermore, by Cauchy-Schwarz inequality, we get:

* * 1 *
[((8), 2 =) < @z — 27| < ~llz = 27,
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so that, choosing in particular, t = d,,, we obtain:
* 1 *
(f6a),2 = ") > =z = 2°].

Recalling that F(z*) is a compact set, when n — +o0o we can assume that f(d,) — f €
F(z*) and we get:

(f,z—a") >0 (2)

By the former construction, we have that Vz € K, there exists f = f(z) € F(z*) such that
(2) holds.

Since F' is convex and compact-valued, then, from Lemma 1 in Blum and Oettli [3], we
get the thesis.

The proof of ii) and iii) is trivial. O

Remark 4. Since every solution of SMVI(F, K) is also a solution of WMV I(F, K), then, from
the previous theorem we obtain that, if F' is pseudo-monotone, the solution sets of WMV I(F, K),
SMVI(F,K) and SVI(F, K) coincide.

Theorem 5. If SMVI(F,K) admits a strict solution, then, this is the unique solution of
SVI(F,K).

Proof: Let z* € K be a strict solution of SMVI(F, K), that is:
<€,y—$*> > 07 Vy € K7 Yy 7é.’13*, Vf € F(y)7

and assume, by contradiction, that there exists 1 € K, x1 # x* such that x1 solves SVI(F, K).
Hence we have:
(&, x1 — ") <0, for some £ € F(x1),

which contradicts the fact that x* solves SMVI(F, K). O

A first link between variational inequalities and differential inclusions is given in the following
proposition which has an immediate proof.

Proposition 2. A point * € K is an equilibrium point for DVI(F, K) if and only if it is a
solution of SVI(F,K).

3 Variational Inequalities and Monotonicity of Trajectories

In this section we explore the links between variational inequalities and the stability of the
trajectories of DVI(F, K), w.r.t. function V.

Theorem 6. If 2" € K is a solution of SMVI(F, K), then every trajectory x(t) of DVI(F, K)
18 monotone w.r.t. function Vi«.

Proof: We observe that, under the hypotheses of the theorem, z* is an equilibrium point of
DVI(F, K) (recall Lemma 1 and Proposition 2). Since xz(t) is differentiable a.e., so is v(t) =
Ve« (z(t)) and we have (at least a.e.):
V(1) = (Vi (x(1), 2/ (1)) = (2 (1), a(t) —a*) =
= (=&(x(t)) — nx(x(t), x(t) — %),
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where £(x(t)) € F(x(t)) and ng(x(t)) € N(K,z(t))). Hence v'(t) < 0 for a.a. ¢ > 0 and hence,
for to > t1: "
v(ta) —v(t) = /t U/(T)dT <0.

0

Corollary 1. Let x* be an equlibrium point of DVI(F, K) and assume that F' is pseudomono-
tone. Then every trajectory of DVI(F, K) is monotone w.r.t. function V.

Proof: Tt is immediate combining Lemma 1 and Theorem 6 0

To get a sort of converse of the previous Theorem, we need the following result.

Theorem 7 ([1]). Let K be a subset of R" and let V : K — RT be a differentiable function.
Assume that for all xg € K, there exists T > 0 and a trajectory z(-) on [0,T) of the differential
inclusion z'(t) = F(x(t)), (0) = xo, satisfying:

Vs >t, V(z(s)) —V(z(t)) <0.
Then V is a Liapunov function for F, that is Vo € K, 3¢ € F(x), such that (V'(z),£) < 0.

Theorem 8. Let z* be an equilibrium point of DVI(F,K). If for any point x € K there
exists a trajectory of DVI(F, K) starting at x and monotone w.r.t. function V=, then x* solves

WMVI(F,K).

Proof: Let & € ri K (the relative interior of K) be the initial condition for a trajectory z(t) of
DVI(F,K) and assume that z(t) is monotone w.r.t. V. If we denote by L the smallest affine
subspace generated by K and set S = L —Z, for x € KNU, where U is a suitable neighborhood
of z, we have T(K,r) = S and N(K,z) = S+ (the subspace orthogonal to S). So, if x(t) is a
trajectory of DV I(F, K) that starts at Z, then, for ¢ "small enough”, it remains in ri K NU and
satisfies (recall Theorem 2):

{ for all t € [0, 7], z(t) € K
for a.a.t€[0,T], 2/(t) € mg(—F(x(t))

Since S is a subspace, g is a linear operator; hence wg(—F(x(t)) is compact and convex Vt €
[0,T] and furthermore mg(—F(-)) is u.s.c. .

Applying Theorem 7 we obtain the existence of a vector u € wg(—F(Z)), such that (V!
0. Taking into account inclusion (1), we have y = —&(Z) — n(x), where £(Z) €
n(z) € S*+. Hence:

IN

* (i.)7 :U’>
F(z) an

o,

(Vi (@) 1) = (¢
= (=€@),7 -

Since T is arbitrary in ri K, we have:

(&(x),z—a") >0, VrerikK.

Now, let € cl K\ri K. Since cl K = clri K, then & = lim zy, for some sequence {z;} € ri K
and:
(&(zg), xp — x*) > 0,Vk.
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There exists a closed ball B(Z,6), with center in & and radius §, such that x;, is contained in
the compact set B(Z,d) N K and since F' is u.s.c., with compact images, the set:

U Fw

yeB(%,0)NK

is compact (see Proposition 3, p. 42 in [l]) and we can assume that {(zx) — ¢ €
UyeB(,s)ni F(y). From the upper semicontinuity of F', it follows also § € F/(Z) and so:

€,z —2a%) > 0.

This completes the proof. O

Therorem 6 can be strenghtened with the following:
Theorem 9. Let x* be a strict solution of SMVI(F, K), then:
i) x* is the unique equilibrium point of DVI(F, K);

i1) every trajectory of DVI(F,K), starting at a point xo € K and defined on [0,+00) is

strictly monotone w.r.t. Vy= and converges to x*.

Proof: The uniqueness of the equilibrium point follows from Theorem 5. The strict monotonicity
of any trajectory x(t) w.r.t. V- follows along the lines of the proof of Theorem 6. Now the
proof of the convergence is an application of Liapunov function’s technique.
Let z(t) € K be a solution of DVI(F, K), starting at some point z¢ € K, i.e. with 2(0) = xo.
Assume, ab absurdo, that a = limy_ oo v(t) > 0 = mingeg Vi (+), where v(t) = Vs (2(t)). We
observe that the limit defining « exists, because of the monotonicity of v(-) and to assume it
differs from 0, it is equivalent to say that z(t) 4 =*. Thus, since z(t) is monotone w.r.t. Vg,
we have V¢ > 0: )
*
a<vt)<s= "TO_;”

* (|2
r—x
Letting L := {ac eK:a< u < (5}, we have that L is a compact set and =* ¢ L, while

x(t) € L, ¥t > 0. Since z* is a strict solution of SMVI(F, K), we have:
(Cy—2") <0, VyeK y#a", VEe—-F(y)

and, in particular:
(§,y—a") <0, VyeL, V&€ —F(y).

Now, we observe that there exists a number m > 0, such that:

maxee_p(y) (& y —2*) < —m, Vye L.

Infact, if such a number does not exists, we would obtain the existence of sequences y,, € L and
&n € F(yn), such that:

1
— %)y > -,
(n,yn —x*) > -

Sending n to +00, we can assume that y, — § € L. Furthermore, since F' is u.s.c. with compact

images, the set:
U Fw
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is compact and we can also assume &, — & € Uye 1, F'(y). By the upper semicontinuity of F', it
follows also £ € F(7) and we get the absurdo:

(&5 —a") > 0.
We have:
v(t) = (2'(t), 2(t) — 2*) = (a(t) +b(t), x(t) — 27),
with a(t) € —F(x(t)), b(t) € —N(K,z(t)) and hence:

V' (t) = {a(t), z(t) — 27) + (=b(t), 2" — x(t)).

Since z(t) € L, for t > 0, we have (a(t), z(t) —2*) < —m, while (=b(¢), z* —z(t)) < 0. Therefore
v'(t) < —m, for t > 0. Now, we obtain, for T' > 0:

T
v(T) —v(0) = /0 V' (T)dr < —mT.

0
If7T= L), we get v(T) < 0= minV(-). But we also have:
m yeK

o(T) > a> zr/]réllr(l V() =0.

Hence a contradiction follows and we must have a = 0, that is x(t) — x*.
O

Corollary 2. Let x* be an equlibrium point of DV I(F, K) and assume that F is strictly pseu-
domonotone. Then properties i) and ii) of the previous Theorem hold.

Proof: Tt is immediate combining Lemma 1 and Theorem 9. g

Example 1. Let K = R? and consider the system of autonomous differential equations:

where F : R2 — R? is a single-valued map defined as:

—y+ 2|l — 2% - y?|

F pr—
(z,y) [az+y|1—x2—y2]

Clearly (x*,y*) = (0,0) is an equilibrium point and one has (F(z,y), (z,y)) > 0 ¥Y(z,y) € R?, so
that (0,0) is a solution of SMV I(F,K) and hence, according to Theorem 6, every solution x(t)
of the considered system of differential equations is monotone w.r.t. Vy-. Anyway, not all the
solution of the system converge to (0,0). Infact, passing to polar coordinates, the system can be

written as:
{ p(t) = —p(t)[1 — p(1)]
o'(t) = -1

and solving the system, one can easily see that the solutions that start at a point (p,0), with p > 1
do not converge to (0,0), while the solutions that start at a point (p,0) with p < 1 converge to
(0,0). This last fact could be checked observing that for every ¢ < 1, (0,0) is a strict solution of
SMVI(F, K.) where:

K. :={(z,y) € R?*: 2?2 + y* < c}.
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4 The case in which F' is single-valued and K is open

In this section we focus on the case in which F' is a single valued operator from K to R™ and
K is open (and convex). In this case N(K,x) = {0}, Vz € K and DVI(F, K) reduces to the
classical autonomous system:

DS(F) 2'(t) = —F(xz(t)).
Clearly, now z* € K is an equilibrium point of DS(F) when F(z*) = 0. In [18] the authors give
some necessary and sufficient conditions for the existence of monotone trajectories of DS(F)
under the hypothesis that F is of class C'. Anyway, existence and uniqueness of the solutions of

Problem 1 hold under weaker hypotheses. In particular, we recall the following classical result
(see e.g. [12]).

Theorem 10. Let K be an open subset of R, xg € K and let F' be Lipschitz with constant K
on a neighborhood U of xo with radius 0, with maxyey |F(x)| < M. If0 < a < min{é/M,1/K},
then there is a unique (differentiable) function x : [0,a) — K , such that x(0) = xo and
2'(t) = —F(x(t)), Vtel0,a).

Here we generalize the results in [18] to the case in which F is locally Lipschitz. We will give
necessary and sufficient conditions for the existence of monotone trajectories of DS(F') (w.r.t.
function Vx*), expressed by means of Clarke’s generalized Jacobian. We remember the following
definition (see for instance [6]):

Definition 9. Let G be a locally Lipschitz function from K to R™. Clarke’s generalized Jacobian
of G at x is the subset of the space R™™ ™ of n x m matrices, defined as:

JoG(z) = conv{lim JG(zy) : xx — =, G is differentiable at z}
(here JG denotes the Jacobian of G and convA stands for the convex hull of the set A CR™).
The following proposition summarizes the main properties of the generalized Jacobian.

Proposition 3.

i) JoF(x) is a nonempty, conver and compact subset of R™*™;
it) the map x — JoF(x) is u.s.c.;

i11) (Mean value Theorem) For all z,y € K we have F(y)—F(x) € conv{JoF(z+d(y—=x))(y—
7),6 € [0, 1]},

Definition 10. Let A(-) be a map from R™ into the subsets of the space R™*™ of n x n matrices.
We say that A(-) is positively defined at x (respectively weakly positively defined) when:
ianEA(w) u' Au >0, YueR"
( supPsc.A(a) u'Au>0, VueR").

If the inequality is strict (for u # 0), we say that A(x) is strictly positive defined (resp. strictly
weakly positive defined).

Theorem 11. Let F': K — R"™ be locally Lipschitz and let x* be an equilibrium point of DS(F).
If there exists a positive number § such that for any xo € K with ||xg — x*|| < 0, there exists
a trajectory x(t) of DS(F) starting at xo and monotone w.r.t. Vi, then Clarke’s generalized
Jacobian of F' at x* is weakly positively defined.
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Proof: Let B(z*,d) be the open ball with center in z* and radius ¢. Fix z € B(z*,J) and let
y(a) = 2" +a(z — "), for a € [0, 1] (clearly y(a) € B(z*,4)). Let x(t) be a trajectory of DS(F)
starting at y(«); for v(t) = V= (x(t)), we have:

0> 2'(0) = (2(0),y(e) — 27),

and:

so that:
(F(y(a),y(a) —a7) = 0.

Now we have, applying the mean value theorem:
F(y(a)) — F(z*) = F(y(a)) € conv{aJoF(z* + 0(z — 2*))(z — 2*), § € [0,a]} = A().
Since JoF(+) is u.s.c., Ve > 0 and for ¢ “small enough”, let’s say ¢ € [0, 5(¢)] we have:
JoF (2" 4+ 0(z —2*)) C JoF(2¥) + eB := J.F(x¥)
(here B denotes the open unit ball in R"*™). So, it follows, for a = §(¢):
A(B(e)) € Ble) JeF(x")(z — 2¥),

and hence, for any € > 0, F(y(8(¢))) € B(e)JF(z*)(z — z*).
Now, let €, = 1/n and ay, = B(e,,). We have (F(y(aw)), y(an) — ) > 0, that is:

ag(z — %) " (d(an) +7(am))(z — 2*) 2 0,

with y(a,) € B and d(ay,) € JoF(z*). So we obtain:

(=~ 2)Td(an)(z — 2°) > ~(z — ) 9(an)(z — 2%) = — (2 — a"Yba(z — ),

with b, € B. Sending n to +0o we can can assume d(a,,) — d € JoF(z*) and we get:
(z—a2*)"d(z — %) > 0.

Since z is arbitary in B(z*, ), we obtain that JoF(z*) is weakly positive defined.
U

Example 2. The condition of the previous Theorem is necessary but not sufficient for the
existence of monotone trajectories (w.r.t. V). Consider the locally Lipschitz function F : R — R

defined as:
22sind, z#0
e z’
Fle) { 0, =0
and the autonomous differential equation z'(t) = —F(x(t)). Clearly z* = 0 is an equilibrium
point and it is known that JoF(0) = [—1,1]. Hence the necessary condition of Theorem 11

is satisfied, but it is easily seen that any trajectory x(t) of the considered differential equation
(apart from the trivial solution x(t) = 0) is not monotone w.r.t. Vyx.

Theorem 12. Assume that JoF(x*) is strictly positively defined. Then, every trajectory x(t)

of DS(F) starting “sufficiently near” x* and defined on [0, +00) is strictly monotone w.r.t. Vi«
and converges to x*.
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Proof: By assumption:

inf wlAu>0, Yue R”\{O},
AeJcF(x*)

and this condition is equivalent to the existence of a positive number m such that
inf gc 7o F(2) vT Av > m, Vv € 8! (the unit sphere in R"). Let ¢ > 0 and consider the set:
JF(z*) := JoF(z*) + ¢B.

We claim:
inf wlAu>0, Vue R”\{O},
A€ J.F(z*)

for € “small enough”. Indeed, A € J.F(x*) if and only if A = A"+ A", with A’ € JoF(x*) and
A" € B and hence, for u € R"\{0}:

inf  w! Au > inf w Au+ inf u'A"u.
A€ F(a¥) AleoF(x*) AlceB

Since A” € eB, we have |u' A"u| < ||A"||||u]| < e|ju||> and we get:

inf  w'Au+ inf w'A"w> inf u' Au—elul?
AleJcF(x*) A’ceB AleJcF(x*)
Therefore:
u' Au . u' Alu

in - > inf
AeJeF() |lull? ~ aredoF@) ||lull?

and for € < m, the righthandside is positive.
If we fix € in (0,m), for a suitable § > 0 we have, for all x € B(z*,4):

JoF(x* 4+ a(x —2¥)) C J.F(z*), Va € (0,1)

and from the mean value theorem, we obtain:

F(z) = F(z) — F(z*) € conv {JoF(z* + §(z — ")) (z — z*), § € [0,1]} C J.F(z")(z — 2¥).
Hence we conclude:
(F(z),z —z*) >0, Vze (R"NB(z*)\{z"}.

and so x* is a strict solution of SMVI(F,R™ N B(x*,6)). The proof now follows from Theorem
9.
O

Example 3. The condition of the previous Theorem is sufficient bur not necessary for the
monotonicity of trajectories. Consider the locally Lipschitz function F: R — R defined as:

z2sint +azx, z#0

where 0 < a < 1, and the autonomous differential equation x'(t) = —F(x(t)), for which z* =0 is
an equilibrium point. In a suitable closed neighborhood U of 0 we have F(x) > 0 if x > 0 , while
F(z) <0, ifz <0 and hence x* is a strict solution of SMV I(F,U). It follows that every solution
of the considered differential equation, starting "near” x*, is strictly monotone w.r.t. Vy+ and
converges to 0. If we calculate the generalized Jacobian of F' at 0 we get JoF(0) = [-1+4+a,1+a]
and the sufficient condition of the previous Theorem is not satisfied.
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5 An application: generalized gradient inclusions

Let f: Q CR"™ — R be a differentiable function on the open set 2. Equations of the form:

a'(t) = —f'(x(t), x(0) =0

are called “gradient equations” (see for instance [12]). In [1] an extesion of the classical gradient
equation to the case in which f is a lower semicontinuous convex function is considered, replacing
the above gradient equation, with the differential inclusion:

/() = —0f(2(t), =(0) = a0,

where 0f denotes the subgradient of f. In this section K will denote again a closed convex
subset of R™

Here, we consider a locally Lipschitz function f : Q C R™ — R, where €2 is an open set containing
the closed convex set K, and the DVI:

Ve [0,T), z(t) € K,

DVI(dcf, K) { for a.a.t€[0,T], 2/(t) € —0cf(x(t)) — N(K,xz(t))

where Oc f(x) denotes Clarke’s generalized gardient of f at x, with the aim of studying the
behaviour of its trajectories. (The definition of Clarke’s generalized gradient can be recovered
from Definition 9, putting there m = 1).

Definition 11. [15] We say that Ocf is semistrictly pseudomonotone on K, when for every
x,y € K, with f(x) # f(y), we have:

Ju € dof(x): (u,y—x) >0=Yve€dof(y): (v,y—z)>0.
Clearly, if J¢ f is strictly pseudomonotone, then it is also semistrictly pseudomonotone.

Definition 12. i) f is said to be pseudoconver on K when Vr,y € K, with f(y) > f(x),
there exizts a positive number a(z,y), depending on x and y and a number §(z,y) € (0, 1],
such that:

fOz+ (1 =Ny) < f(y) — Aa(z,y), VA€ (0,6(z,y)).

it) f is said to be strictly pseudoconvez if the previous inequality holds whenever f(y) >
f@), =#y.
We recall the following result, obtained by Luc [15].

Theorem 13. i) Assume that Oc f is semistrictly pseudomonotone on an open convez set
A CR". Then [ is pseudoconvexr on A.

i1) Assume that Oc f is strictly pseudomonotone on an open convex set A. Then f is strictly
pseudoconver on A.

Remark 5. Strictly pseudomonotone and semistrictly pseudomonotone maps are called respec-
tively “strictly quasimonotone” and “semistrictly quasimonotone” in [15].

Definition 13. We say that a function f : R™ — R is inf-compact on the closed convex set K,
when Yc € R, the level sets:
leveof i ={x e K: f(z) <c}

are compact.
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Remark 6. Clearly, if f is inf-compact on K the set argmin(f, K) of minimizers of f over K is
compact. The converse does not hold.

Theorem 14. Let x(t) be a slow solution of DVI(Oc f, K) defined on [0,T]. Then, Vsi, sa €
[0,T] with s3 > s1, we have:

ﬂﬂww—ﬂﬂa»<—/®WM4%ﬂM®%4WKw®mW%-

S1
Hence the function g(t) = f(z(t)) is nonincreasing and limy_ 4~ f(z(t)) exists.

Proof: Since a locally Lipschitz function is differentiable a.e., the function g(¢) = f(x(¢)) is
differentiable a.e., with ¢'(¢t) = f'(z(t))2'(t) and 2/(t) € m(—dc f(x(t)) — N(K,z(t))) for a.a. t .
Recalling (Theorem 3) that the slow solutions of DV I(0¢ f, K) coincide with the slow solutions
of PDI(0cf,K) and that f'(z(t)) € 0cf(x(t)) [6], we have from Proposition 1:

P (t))<za m(=0c f(x(t)) — N(K,z(t)))) + [m(=0c f(x(t)) = N(K,x(1)|* < 0

and for a.a. ¢, we get:

g'(t) = f'(@(t)a'(t) < —[m(=0cf(=(t)) = N(K, (1) <0,

from which we deduce:

Flatoa)) = Fato) < = [ Im(-00 £ (a(s) = N(K.2(s))Pds < 0

51

The second part of the theorem is now an immediate consequence. O

Theorem 15. Suppose that f achieves its minimum over K at some point. Assume that Oc f
is a semistrictly pseudomonotone map and that f is inf-compact. Then every slow solution x(t)
of DVI(0c f, K) defined on [0,+00), is such that:

lim f(x(t)) = min f(x).

t——+o00 reK
Furthermore, every cluster point of x(t) is a minimum point for f over K.

Proof: Let z(t) be a slow solution starting at zp = x(0) and ab absurdo, assume that
limy—y oo f(2(t)) = @ > mingex f(x). The set:

Z={zeK:a< f(z) < f(z)}
is compact, since f is inf-compact and argmin(f, K)NZ = 0. If we set A = {z(t),t € [0,400)},
then we get cl A C Z, and hence argmin(F, K) NclA = . If 2* € argmin(f, K), then it is an
equilibrium point of DV I(9¢ f, K) (see [6]), that is:
0€dcf(z™)+ N(K,z"),

and this is equivalent (see Proposition 2) to the fact that x* solves SVI(Jc f, K), that is to the
existence of vector v € d¢ f(x*) such that:

(v,x —2x*) >0, VrekK.
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It follows also: (v,a—a*) >0, Va € cl A and since d¢ f is semistrictly quasimonotone, we have
(observe that f(a) # f(z*) Va € cl A):

(wya—2x*) <0, Ywe —0dcf(a), YaeclA.

Observing that cl A is a compact set, as in the proof of Theorem 9, it follows the existence of a
positive number m such that:

(w,a — %) < —m, Yw € —0cf(a), Va € clA.

Hence, letting v(t) = M

and hence, for T" > 0:

, as in the proof of Theorem 9, we obtain v'(t) < —m for a.a. t

T
v(T) —v(0) = /0 V' (T)dr < —mT.

For T' = v(0)/m, we obtain v(T') < 0, that is v(T") = 0 and hence z(T") = z*, but this is absurdo,
since the set A does not intersects argmin(f, K).
Now the last assertion of the theorem is obvious.

The previuos Theorem can be strenghtened using the results of section 3.

Proposition 4. Let f be a function that achieves its minimum over K at some point z* and
assume that x* is a strict solution of SMVI(0cf,K). Then every solution defined on [0,400)

of DVI(Ocf, K) is strictly monotone w.r.t. Vy= and converges to x*.

Proof: It is immediate recalling that if z* is a minimum point for f over K, then it is an
equilibrium point of DV I(d¢ f, K) and applying Theorem 9. O

Remark 7. If z* is a strict solution of SMVI(0¢cf, K), then it can be proved that f is strictly
increasing along rays starting at z*. The proof is similar to that of Proposition 4 in [7].

Corollary 3. Let f be a function that achieves its minimum over K at some point x*. If ¢ f is
strictly pseudomonotone, then x* is the unique minimum point for f over K and every solution

of DVI(0c f,K) defined on [0,400) converges to x*.

Proof: Recall that, under the hypotheses, f is strictly pseudoconvex (Theorem 13) and hence it
follows easily that z* is the unique minimum point of f over K. The proof is now an immediate
consequence of Corollary 2. d
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