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Abstract. Let q > 1 be a fixed integer number. We prove that a discrete

q-periodic evolution family

U = {U(m, n) : (m, n) ∈ Z+ × Z+, m ≥ n ≥ 0}
on a complex Banach space X is uniformly asymptotically stable, that is,
U(m, n) → 0 in the norm of L(X ) when (m− n) →∞, if and only if for each

µ ∈ R and each x ∈ X one has

max
1≤j≤q−1

sup
m≥1

∥∥∥∥∥
m∑

k=1

e−iµkqU(kq, j)x

∥∥∥∥∥ := M(µ, x) < ∞.

In particular, we obtain the following result of Datko type. The family U is

uniformly asymptotically stable if and only if for each x ∈ X one has

max
1≤j≤q−1

∞∑
k=1

||U(kq, j)x|| < ∞.

1. Introduction

Let T = {T (t)}t≥0 be a strongly continuous semigroup on a complex Hilbert
space H and A : D(A) ⊂ H → H its infinitesimal generator. It is well-known that
if the operator resolvent of A exists and is uniformly bounded on the imaginary axis
then the semigroup T is exponentially stable, that is, its uniform growth bound
ω0(T) := inft>0

ln(||T (t)||)
t is negative. This result is usually referred to as Gearhart’s

theorem. Another variant of this theorem, independent proofs and related results
can be found in [10], [11], [12], [8], [14] and [17]. See also the references therein.
Applications of this theorem in the study of the stability of solitary waves for a large
class of Hamiltonian partial differential equations of mathematical physics can be
found in [5] and the references therein. Because the resolvent operator-valued map
R(·, A) is also the Laplace transform of T (·) on the closed right half-plane, the main
hypothesis of Gearhart’s theorem can be written as

(1.1) sup
µ∈R

∥∥∥∥∫ ∞

0

e−iµtT (t)xdt

∥∥∥∥ = Mx < ∞ for all x ∈ H.

It is well-known that Gherhart’s theorem does not work in general Banach spaces,
see [9] for a counterexample.

We now examine the same problem from a different perspective. Let A be a
linear and bounded operator on a complex Banach space. It is well-known, see for
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example [1], that the uniformly continuous semigroup {etA} is exponentially stable
if and only if

(1.2) sup
s≥0

∥∥∥∥∫ s

0

e−iµtetAxdt

∥∥∥∥ < ∞

for every µ ∈ R and every x ∈ X . The classical solution of the Cauchy problem

(A,µ, x) u̇(t) = Au(t) + eiµtx, for all t ≥ 0, u(0) = 0,

where µ ∈ R and x ∈ X is given by

u(s) = eiµs

∫ s

0

e−iµteiµAxdt, s ≥ 0.

We can say that the linear system

(1.3) u̇(t) = Au(t) t ≥ 0

is exponentially stable if and only if for each µ ∈ R and each x ∈ X the solution of
the Cauchy problem (A,µ, x) is bounded. Unfortunately this nice result cannot be
extended to the general case of strongly continuous semigroups (cf. [15], [16]).

Incorporating conditions of type (1.1) and (1.2), Jan van Neerven has shown in
[13] that if T = {T (t)}t≥0 is a strongly continuous semigroup on a Banach space
X such that for each x ∈ X

(1.4) sup
µ∈R

sup
s≥0

∥∥∥∥∫ s

0

e−iµtT (t)xdt

∥∥∥∥ = M(x) < ∞,

then the operator resolvent of the generator A of T exists and is uniformly bounded
on the open right half-plane. Another proof of this result was given by Vu Phong [16]
in which the above result was cast in the framework of Cauchy problems. This proof
utilised a lemma proved in [15] as well. Combining this with Gearhardt’s theorem it
follows that if (1.4) holds and X is a complex Hilbert space then the semigroup, T
is uniformly exponentially stable. In the general framework of Banach spaces this
latter fact is not true, see for example [2]. In order to introduce non-autonomous
results of this type we recall the notion of an evolution family of bounded linear
operators. Let X be a Banach space. A family U = {U(t, s) : t ≥ s ≥ 0} of bounded
linear operators acting on X is said to be a strongly continuous evolution family on
X if U(t, t) = I for all t ≥ 0, U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r ≥ 0 and the
function (t, s) 7→ U(t, s) is strongly continuous on the set {(t, s) ∈ R×R : t ≥ s ≥ 0}.
Such a family is exponentially bounded if there exist ω ∈ R and M ≥ 1 such that

||U(t, s)|| ≤ Meω(t−s) for all t ≥ s ≥ 0.

Let θ be a positive fixed number. The strongly continuous evolution family U is
called θ-periodic if U(t + θ, s + θ) = U(t, s) for all t ≥ s ≥ 0. Here I denotes the
identity operator on X . If U(t + ρ, s + ρ) = U(t, s) for every positive ρ and every
t ≥ s ≥ 0 then the family {U(t, 0) : t ≥ 0} is a strongly continuous semigroup.
Thus it is natural to ask if a θ-periodic strongly continuous evolution family U on
a complex Hilbert space H satisfying (1.4), with T (t) replaced by U(s, , s − t), is
exponentially stable. That is, there exist the constants N > 0 and ν > 0 such that

||U(t, s)|| ≤ Ne−ν(t−s)

for all t ≥ s ≥ 0.
To the best of our knowledge it is still unknown whether or not this is true. A

partial positive answer to this question is given in this paper for the case of discrete
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evolution families on complex Banach spaces. Moreover, we will not require in (1.4)
the uniform boundedness condition with respect to µ on R.

2. The Autonomous Case

Let Z+ := {0, 1, . . . }. For each real number µ and each complex number x we
consider the following discrete equations:

(2.1) xn+1 = axn, n ∈ Z+;

(A,µ, x) yn+1 = ayn + eiµnx, n ∈ Z+, y0 = 0,

where the complex numbers x0 and a are given.
After standard calculations we obtain the ”solutions” (xn) and (yn) of the equa-

tions (2.1) and (A,µ, x), given by:

xn = anx0

and

yn = eiµ(n−1)
n−1∑
k=0

e−iµkakx(2.2)

=
{

(1− e−iµa)−1[eiµ(n−1) − e−iµan]x, if a 6= eiµ

neiµnb + ne−iµ(n−1)x, if a = eiµ

respectively.
Now we can easily state the following result concerning the asymptotic stability

of equation (2.1):

Proposition 1. Let x0 6= 0. The following statements are equivalent:
(1) lim

n→∞
xn = 0.

(2) The modulus of a is less than 1.
(3) For each real number µ and each complex number x the sequence (yn) is

bounded.

Before stating abstract results of this type, we firstly examine the two dimen-
sional case.

Let A be a quadratic complex matrix of order 2 and let

X =
(

x
x′

)
, Xn =

(
xn

x′n

)
, and Yn =

(
yn

y′n

)
.

Let us consider the scalar equation in λ

(2.3) det(λI2 −A) = 0.

Here I2 denotes the identity matrix of order two. If the equation (2.3) has different
roots λ1 and λ2, then it is well-known that there exists an invertible quadratic
complex matrix T such that

(2.4) T−1AT =
(

λ1 0
0 λ2

)
.

In the sequel we consider the following 2-dimensional linear systems

(2.5) Xn+1 = AXn, n ∈ Z+;
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(A,µ,X) Yn+1 = AYn + eiµnX, Y0 =
(

0
0

)
, n ∈ Z+;

If we suppose that for each X0, the solution (Xn) of the system (2.5) tends to 0
then |λ1| < 1 and |λ2| < 1. This easily follows because using (2.4) we get:

(2.6) T−1Xn =
(

λn
1 0
0 λn

2

)
T−1X0.

Note also that (Xn) tends to 0 if and only if (T−1Xn) tends to 0 when n tends to
∞.

On the other hand

Yn = eiµ(n−1)
n−1∑
k=0

(e−iµA)kX.

Again using (2.4), we get

(2.7) T−1Yn = eiµ(n−1)
n−1∑
k=0

e−iµk

(
λk

1 0
0 λk

2 .

)
T−1X.

We remark that (T−1Yn) is bounded if and only if (Yn) is bounded as well.
If λ1 = λ2 := α then there exists an invertible quadratic matrix T and a complex

number β such that

T−1AT =
(

α β
0 α

)
.

As above we obtain

(2.8) T−1Xn =
(

αn nβαn−1

0 αn

)
T−1X0

and

(2.9) T−1Yn = eiµ(n−1)
n−1∑
k=0

e−iµk

(
αk kβαk−1

0 αk

)
T−1X.

Using the representation of the solutions of (2.5) and (A,µ,X) incorporated in
(2.6), (2.7), (2.8) and (2.9), and using the second formula for yn in (2.2) we may
state the following result.

Proposition 2. Suppose that the equation (2.4) has the roots λ1 and λ2. Then the
following statements are equivalent:

(1) The system (2.5) is strongly stable, that is AnX0 → 0 as n →∞, for every
X0.

(2) The spectrum of the matrix A, (i.e. the set σ(A) := {λ1, λ2}) belongs to
the open disk D(0, 1) := {λ ∈ C : |λ| < 1}.

(3) For each real number µ the solution (Yn) of (A,µ,X) is bounded for every
X.

Throughout the paper, L(X ) will denote the set of bounded linear operators
acting on the complex Banach space X . If T is a bounded linear operator on X ,
ρ(T ) will denote the resolvent set of T relative to L(X ) (that is, the set of all
complex scalars λ for which λI−T is invertible in L(X )) and σ(T ) := C\ρ(T ) will
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denote the spectrum of T. The spectrum radius of T will be denoted by r(T ). It is
well-known that

(2.10) r(T ) := sup{|λ| : λ ∈ σ(T )} = inf
n≥1

||Tn|| 1n .

In order to obtain discrete Cauchy problems, we replace in (A,µ,X) the contin-
uous time t by the discrete time n ∈ Z+. More precisely we replace the derivative
u̇(t) by the difference un+1 − un and the operator A by the ”discrete Laplacian”
T − I. The discrete version of (A,µ,X) then reads

(T, µ, x) un+1 = Tun + eiµnx for all n ∈ Z+, u0 = 0,

and the continuous semigroup T will be replaced by the discrete semigroup

T := {T (n)}n∈Z+ where T (n) ≡ Tn.

With the above stipulations, we may state the following abstract result.

Theorem 1. The following three statements are equivalent:

1. lim
n→∞

Tn = 0 in the norm of L(X ), that is, T is uniformly asymptotically
stable.

2. For each real number µ and each x ∈ X the solution of (T, µ, x), is bounded.
3. The spectral radius of T is less than 1.

Proof. 3 ⇒ 1. From (2.10) it follows that r(T ) ≤ ||T ||. If r(T ) = ||T || the result can
be easily obtained. Then we can suppose that r(T ) < ||T ||. Let 0 < ω < 1
such that r(T ) < ω. There exists n0 ∈ Z+, n0 > 1 such that ||Tn0 || < ωn0 .
Let n = mn0 + r0 with m ∈ Z+, r0 ∈ Z+ and r0 < n0. It is clear that
n →∞ if and only if m →∞. Then

||Tn|| ≤ ||Tn0 ||m||T r0 || → 0 when n →∞.

1. ⇒ 3. Is obvious.
2. ⇒ 3. After a simple calculation we obtain

yn = eiµ(n−1)
n−1∑
k=0

e−iµkT kx.

Then the sequence (yn) is bounded if and only if

(2.11) sup
n≥1

∥∥∥∥∥
n−1∑
k=0

e−iµkT kx

∥∥∥∥∥ = M(µ, x) < ∞.

It is known that if (2.11) holds for each real number µ and each x ∈ X then
r(T ) < 1. For a proof of the later fact, see [3].

3. ⇒ 2. If r(T ) < 1 then for each real number µ, one has r(e−iµT ) < 1. Under
these conditions it is well-known that the series

∑
k≥0

e−iµkT k is convergent

in L(X ). Now it is easily to see that (2.11) holds.
�
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3. The Periodic Time-Varying Case

A family U = {U(m,n) : (m,n) ∈ Z+ × Z+} of bounded linear operators acting
on a complex Banach space X is called discrete periodic evolution family if

1. U(m,n)U(n, p) = U(m, p) for all m ≥ n ≥ p ≥ 0;
2. U(m,m) = I for all m ∈ Z+ and
3. there exists an integer number q > 1 such that U(m + q, n + q) = U(m,n)

for all m,n ∈ Z+, m ≥ n.

Let q ∈ Z+ be fixed and by Sq(Z+, X) we will denote the set of all X-valued and
q-periodic sequences on Z+. For each q-periodic L(X)-valued sequence V = (Vn),
each z = (zn) ∈ Sq(Z+, X) and each real number µ let us consider the following
discrete Cauchy problem:

(V, µ, z) yn+1 = Vnyn + eiµnzn for all n ∈ Z+ y0 = 0.

Let

U(n, k) :=
{

Vn−1Vn−2 · · ·Vk, if k ≤ n− 1
I, if k = n,

then, the family {U(n, k)}n≥k≥0 is a discrete q-periodic evolution family and the
solution (yn) of (V, µ, z) is given by:

(3.1) yn =
n∑

k=1

eiµ(k−1)U(n, k)zk.

We begin with the following lemmas which will prove useful later.

Lemma 1. Let T be a bounded linear operator acting on the Banach space X and
µ ∈ R. If

sup
n∈{1,2,··· }

n∑
k=1

||e−iµkT k|| < ∞

then T is power bounded and eiµ ∈ σ(T ).

Proof. See for example Lemma 2 from [4].
�

Lemma 2. Let µ ∈ R, q ∈ Z, q > 1 and S1(µ) :=
q∑

k=1

k(q−k)eiµk. Then S1(µ) = 0

if and only if

(q − 1)(1 + eiµ) = 2(eiµ + e2iµ + · · ·+ e(q−1)iµ).

Proof. If z := eiµ ± 1 then S1(µ) 6= 0. Let L :=
q∑

k=1

kzk−1 and P :=
q∑

k=1

k2zk−1.

Then S1(µ) = 0 if and only if q(1− z)L = (1− z)Q or equivalently if

(q + 1)(1 + z + · · ·+ zq−1) = 2L.

If multiply again with (1− z) we get the conclusion of this lemma. �

Let T := U(q, 0). The following result may be stated.

Theorem 2. Let q > 1 be a fixed integer number. The following three statements
are equivalent.

1. The spectral radius of T is less than 1.
2. U(m,n) → 0 in the norm of L(X) when (m− n) →∞.
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3. For each real number µ and each sequence (zn) in Sq(Z+,X ) with z0 = 0
the solution (yn) of the problem (V, µ, z) is bounded.

Proof. 3. ⇒ 1. Let x ∈ X be fixed and (zn) in Sq(Z+,X ) be given by:

zk = U(k, 0)x, k = 1, . . . , q − 1 and z0 = zq = 0.

For each m ∈ Z+ one has:

ymq =
m−1∑
j=0

(j+1)q∑
k=jq

eiµ(k−1)U(mq, k)zk

=
m−1∑
j=0

q−1∑
ρ=1

eiµ(jq+ρ−1)U((m− j)q, ρ)zρ

= e−iµ

q−1∑
ρ=1

eiµρ
m−1∑
j=0

eiµjqTm−jx

= eiµ(qm−1)S(µ)
m−1∑
j=0

e−iµqjT jx.

If are taking zk = k(q − k)U(k, 0)x, k = 1, 2 · · · q obtain same result with

S1(µ) instead of S(µ). Because S(µ) :=
q−1∑
ρ=1

eiµρ and S1(µ) cannot be null

simultaneously, the sequence (ymq)m is bounded if and only if for each real
number µ and each x ∈ X one has

sup
m∈Z+

∥∥∥∥∥∥
m∑

j=0

e−iµqjT jx

∥∥∥∥∥∥ := K(µ, q, x) < ∞,

that is, r(T ) < 1.
1. ⇒ 2. We prove that there exist N > 0 and ν > 0 such that

(3.2) ||U(m,n)|| ≤ Ne−ν(m−n) for every m ≥ n ≥ 0.

Let ω > 0 such that r(T ) < e−ω. Then r(eωtT ) < 1 and there exists K > 1
such that

sup
n∈Z+

||eωnTn|| ≤ K.

If m = pq + r with p ∈ Z+, r ∈ Z+ and r < q then

||U(m, 0)|| ≤ ||U(r, 0)|| · ||U(pq, 0)|| ≤ Rqe
−ωm,

where
Rq := eωq sup

0≤r≤q
||U(r, 0)||.

Let
Lq := sup

0≤r≤p≤2q
||U(p, k)||.

If n ≤ m ≤ n + q then

||U(m,n)|| ≤ Lqe
qe−(m−n).

If m > n + q and n = p1q + r1 with p1 ∈ Z+, r1 ∈ Z+ and 0 ≤ r1 < q then

||U(m,n)|| = ||U(m, (p1 + 1)q)U(q, r1)|| ≤ LqRqe
−ω(m−n).
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We can choose N = max{Rq, e
qLq, RqLq} and ν = max{ω, 1}.

2. ⇒ 3. Using (3.1) and (3.2) we obtain

||yn|| ≤ N ||z||∞
n∑

k=1

e−ν(n−k) =
Neν

eν − 1
||z||∞

for every n ∈ Z+, and the theorem is proved.
�

Corollary 1. Let q > 1 be a fixed integer number. A discrete q-periodic evolution
family U = {U(m,n)}m≥n≥0 on a complex Banach space X is uniformly asymp-
totically stable if and only if for each real number µ and each x ∈ X the following
inequality holds:

(3.3) max
1≤j≤q−1

sup
m≥1

∥∥∥∥∥
m∑

k=1

e−iµkqU(kq, j)x

∥∥∥∥∥ := M(µ, x) < ∞.

Proof. The sequence (yn) given in (3.1) is bounded if and only if the sequence
(ymq)m is bounded. As above one has:

ymq =
m−1∑
j=0

q∑
ρ=0

eiµ(jq+ρ−1)U((m− j)q, ρ)zρ(3.4)

=
q∑

ρ=0

m−1∑
j=0

eiµjqeiµ(ρ−1)U((m− j)q, ρ)zρ

=
q∑

ρ=0

eiµmqeiµ(ρ−1)
m∑

k=1

e−iµkqU(kq, ρ)zρ.

Using (3.3) and (3.4) it follows that:

||ymq|| ≤
q−1∑
ρ=1

M(µ, zρ) < ∞.

Now we apply the above Theorem 2 to complete the proof. �

The Datko theorem says that a strongly continuous and exponentially bounded
evolution family U = {U(t, s)}t≥s≥0 is uniformly exponentially stable if and only if

sup
s≥0

∫ ∞

s

||U(t, s)x||dt = K(x) < ∞

for every x ∈ X . See [6] for details.
Arguing as in the proof of Corollary 1 we can obtain the following discrete variant

of the Datko theorem.

Corollary 2. Let q > 1 be a fixed integer number. A discrete q-periodic evolution
family U = {U(m,n)}m≥n≥0 on a complex Banach space X is uniformly asymptot-
ically stable if and only if for each x ∈ X one has

max
1≤j≤q−1

∞∑
k=1

||U(kq, j)x|| < ∞.
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[15] M. Reghiş, C. Buşe, On the Perron-Bellman theorem for C0-semigroups and periodic evolu-

tionary processes in Banach spaces, Italian J. Pure and Appl. Math. 4(1988), 155-166.
[16] V. Q. Phong, On stability of C0-semigroups, Proceedings of the American Mathematical

Society, 129(2002), 2871-2879.

[17] G. Weiss, Weak Lp-stability of a linear semigroup on a Hilbert space implies exponential
stability, J. Diff. Eq. 76(1988), 269-285.

Department of Mathematics, West University of Timisoara, Timisoara, 1900, Bd. V.

Parvan. Nr. 4, Romania

E-mail address: buse@math.uvt.ro

URL: http://rgmia.vu.edu.au/BuseCVhtml/index.html

School of Computer Science and Mathematics, Victoria University of Technology,
PO Box 14428, MCMC 8001, Victoria, Australia.

E-mail address: pc@csm.vu.edu.au

URL: http://rgmia.vu.edu.au/cerone

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.vu.edu.au/SSDragomirWeb.html

E-mail address: anthony.sofo@vu.edu.au

URL: http://rgmia.vu.edu.au/sofo


	1. Introduction
	2. The Autonomous Case
	3. The Periodic Time-Varying Case
	References

