ON THE COMPOSITION OF COMPLETELY MONOTONIC FUNCTIONS

SENLIN GUO

ABSTRACT. In this article, we investigate the composition of functions related to the completely monotonic functions.

1. INTRODUCTION

Throughout the paper, \mathbb{N} denotes the set of all positive integers, $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$, $\mathbb{R}^+ := (0, \infty)$, I^+ is an open interval contained in \mathbb{R}^+ , I^o is the interior of the interval $I \subset \mathbb{R}$, $-I := \{-x | x \in I\}$, $\mathcal{R}(f)$ denotes the range of the function f and C(I) is the class of all continuous functions on I.

We first recall some definitions.

Definition 1.1 ([5]). A function f is said to be absolutely monotonic on an interval I, if $f \in C(I)$, has derivatives of all orders on I° and for all $n \in \mathbb{N}_0$

$$f^{(n)}(x) \ge 0, \quad x \in I^o$$

We use AM(I) to denote the class of all absolutely monotonic functions on I.

Definition 1.2 ([5]). A function f is said to be completely monotonic on an interval I, if $f \in C(I)$, has derivatives of all orders on I° and for all $n \in \mathbb{N}_0$

$$(-1)^n f^{(n)}(x) \ge 0, \quad x \in I^o.$$

Some mathematicians use the terminology of completely monotone instead of completely monotonic.

The class of all completely monotonic functions on I is denoted by CM(I).

Definition 1.3 ([4]). A function f is said to be strongly completely monotonic on I^+ if, for all $n \in \mathbb{N}_0$, $(-1)^n x^{n+1} f^{(n)}(x)$ are nonnegative and decreasing on I^+ .

The class of such functions is denoted by $SCM(I^+)$.

Definition 1.4 ([1]). A function f is said to be almost completely monotonic on an interval I, if $f \in C(I)$, has derivatives of all orders on I^{o} and for all $n \in \mathbb{N}$

$$(-1)^n f^{(n)}(x) \ge 0, \quad x \in I^o.$$

Let's use ACM(I) to denote the set of all such functions on I.

Definition 1.5 ([1]). A function f is said to be almost strongly completely monotonic on \mathbb{R}^+ if, for all $n \in \mathbb{N}$, $(-1)^n x^{n+1} f^{(n)}(x)$ are nonnegative and decreasing on \mathbb{R}^+ .

²⁰⁰⁰ Mathematics Subject Classification. Primary 26A48, 26E40; Secondary 33B15.

 $Key\ words\ and\ phrases.$ Composition, completely monotonic function, strongly completely monotonic function.

The class of almost strongly completely monotonic functions on \mathbb{R}^+ is denoted by $ASCM(\mathbb{R}^+)$.

For compositions of completely monotonic and related functions. The following two results are a version of the corresponding Theorems in [5, Chapter IV]

Theorem 1.6. Suppose that $f \in AM(I_1), g \in AM(I)$ and $\mathcal{R}(g) \subset I_1$, then $f \circ g \in AM(I)$.

Theorem 1.7. Suppose that $f \in AM(I_1), g \in CM(I)$ and $\mathcal{R}(g) \subset I_1$, then $f \circ g \in CM(I)$.

The next result, which was established in 1983 by Lorch and Newman [2, Theorem 5], is a converse of Theorem 1.7.

Theorem 1.8. Let f be defined on $[0,\infty)$. If for each $g \in CM(\mathbb{R}^+)$, $f \circ g \in CM(\mathbb{R}^+)$, then $f \in AM(\mathbb{R}^+)$.

The following result is a generalized form of Theorem 2 of [3].

Theorem 1.9. Suppose that $f \in CM(I_1), g \in C(I), g' \in CM(I^0)$ and $\mathcal{R}(g) \subset I_1$, then $f \circ g \in CM(I)$.

From this result we can obtain

Corollary 1.10. If $f \in CM(I_1)$, where $I_1 := (a, b)$ with $-\infty \leq a < b < \infty$, then $f(b - e^{-x}) \in CM(I)$. Here $I := (-\ln(b - a), \infty)$.

In 1983 Lorch and Newman [2, Theorem 4] gave an interesting result related to Theorem 1.9 as follows.

Theorem 1.11. For each function $f \in CM(I)$, where $I := [0, \infty)$, there exists a function g on I such that g(0) = 0, $f \circ g \in CM(I)$ and $g' \notin CM(\mathbb{R}^+)$.

2. Main results

In this article, we further investigate the composition of functions related to the completely monotonic functions.

First we give the following

Definition 2.1. A function f is said to be almost absolutely monotonic on an interval I, if $f \in C(I)$, has derivatives of all orders on I° and for all $n \in \mathbb{N}$

$$f^{(n)}(x) \ge 0, \quad x \in I^o.$$

Let's use AAM(I) to denote the class of all such functions on I. From definitions we directly have

Theorem 2.2. A function f is almost completely monotonic on an interval I if and only if the function f(-x) is almost absolutely monotonic on -I.

We can prove the following results of the compositions.

Theorem 2.3. Suppose that $f \in ACM(I_1), g \in C(I), g' \in CM(I^0)$ and $\mathcal{R}(g) \subset I_1$, then $f \circ g \in ACM(I)$.

Theorem 2.4. Suppose that $f \in ASCM(I_1^+), g' \in SCM(I^+)$ and $\mathcal{R}(g) \subset I_1^+$. If $2xg'(x) \geq g(x), x \in I^+$, then $f \circ g \in ASCM(I^+)$.

 $\mathbf{2}$

Remark 2.5. The condition $2xg'(x) \ge g(x), x \in I^+$ in Theorem 2.3(2) can not be deleted even if $f \in ASCM(I_1^+)$ is replaced by a stronger condition: $f \in SCM(I_1^+)$. For example, let $f(x) := 1/x, g(x) := \ln x$ and $I^+ := (e^2, \infty)$. Then $f \in SCM(\mathbb{R}^+), g' \in SCM(I^+)$, and the condition $2xg'(x) \ge g(x), x \in I^+$ is not satisfied. It is easy to show that

$$(-1)^1 x^2 [f \circ g(x)]' = \frac{x}{\ln^2 x}$$

is strictly increasing on I^+ . Hence $f \circ g(x) \notin ASCM(I^+)$.

Theorem 2.6. Suppose that $f \in ACM(I_1), -g \in ACM(I)$ and $\mathcal{R}(g) \subset I_1$, then $f \circ g \in ACM(I)$.

Theorem 2.7. Suppose that $f \in ACM(I_1), -g \in ASCM(I^+)$ and $\mathcal{R}(g) \subset I_1$. Then $f \circ g \in ASCM(I^+)$.

References

- S. Guo, Some function classes connected to the class of completely monotonic functions, *RGMIA Res. Rep. Coll.* 9(2) (2006), Art. 8 [Online: http://rgmia.vu.edu.au/v9n2.html].
- [2] L. Lorch, and D.J. Newman, On the composition of completely monotonic functions completely monotonic sequences and related questions, J. London Math. Soc. (2) 28 (1983), 31–45.
- K. S. Miller and S. G. Samko, Completely monotonic functions, Integral Transform. Spec. Funct. 12 (2001), 389–402.
- [4] S.Y. Trimble, J. Wells and F.T. Wright, Supperaddative functions and a statistical application, SIAM J. Math. Anal. 20 (1989), 1255–1259.
- [5] D.V. Widder, The Laplace transform, 7th printing, Pinceton University Press, Pinceton, 1966.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANITOBA, WINNIPEG, MB, R3T 2N2, CANADA *E-mail address*: sguo@hotmail.com; umguos@cc.umanitoba.ca