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1 Introduction

Although we will refer to results proved for domains in IRn, our focus in
this paper will be on domains in the plane, n = 2. Numerous domain
functionals have been studied: torsional rigidity and various capacities are
amongst those arising in physical problems: see [1, 18] for example. Our
main focus in this paper will be various moments of inertia, and a large part
of the paper will be re-deriving results originally established in [9].

Let D be a domain (an open connected set) in the plane. The focus in
this work will be purely geometric functionals of D, for example,

• perimeter L, area A,

• centroids, Steiner curvature centroids,

• as well as various moments of inertia.

We will consider moments of inertia both for mass distributed uniformly
over the region, and also – to a much less extent, and only for its uses
elsewhere in these notes – for mass distributed uniformly over the boundary
of the region. We will consider polar moments of inertia taken about both
the Steiner centroid, denoted Is, and the ordinary centroid, denoted Ic. Ic is
treated in [9]. Several proofs are simpler when the body is ‘with centre’. All
these quantities are homogeneous geometric domain functionals. Definitions
of terms will be given beginning in §3.

One theme of the notes is the connections between some Brunn-Minkowski-
style results and isoperimetric inequalities. In particular, the result concern-
ing the 1/4-concavity of the area polar moment of inertia about the Steiner
centroids, Is for Minkowski sums, appears to be equivalent to three isoperi-
metric inequalities.
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• One is due to Polya, in the case n = 2,

2Ic

π
≤ (

L

2π
)4 (1.1)

[9], in giving a different proof, also generalized the result to n dimen-
sions. The statement involving Ic, rather than Is is deliberate. There
are several ways to prove this. Our proof in §10 will depend on ob-
taining the result for bodies with centre, using Is = IO = Ic.

• Another, proved for domains with centre, is

(
2I0

π
)3 ≤ (

I(∂D)
2π

)4. (1.2)

Here I(∂D) denotes the polar moment of inertia of a uniform mass
distribution along the boundary ∂D, the moment being taken about
the centre O. Closely related results were proved for such domains in
[15].

• The final one involves a functional, denoted Z below, appears not to
have been studied before.

The structure of the paper is as follows.

• In §2 we present Polya’s isoperimetric inequality, (1.1). Its proof, with
a starting point similar to that in [9], is a goal of the paper.

• §3,4,5 are needed for the proofs in §7. §6 presents examples showing
what is provable, and, perhaps, excusing some of the technicalities in
the proofs in §7

• In §7 we present a proof of the result of [9] that the polar moment about
the centroid Ic(D(t)) is, under Minkowski addition, 1/4-concave.
Theorem. (Hadwiger [9]) For convex domains in n dimensions,
Ic(D(t))1/(n+2) is concave in t for 0 ≤ t ≤ 1.
The starting point in our proof is the Prekopa-Leindler inequality, but,
other than that, most elements of the proof parallel that of [9] 50 years
ago.

• Support functions are introduced in §8. These are essential tools in
quite separate applications in §9 and in §10.

• In §9 we use central symmetrisation, also called Blaschke symmetrisa-
tion to reduce the problem of establishing (1.1) to that of establishing
it for convex sets with centre. This form of symmetrisation is appro-
priate for treating inequalities containing L. (As an aside, a proof of
(1.1) is then presented, requiring the use of a generalized central sym-
metrisation. For us, this is an aside, as our goal is a unified derivation
of both (1.1) and (1.2).)

• At this point, we make, in §10, a separate start. There are various
useful representations of polar moments of inertia in terms of the sup-
port function of a convex domain. In §11, we use these representations
with domains D0, D1, and hence D(t), with their Steiner centroids at
the origin, so Is = IO. For sets for which Is(D(t)) are 1/4-concave, we
establish
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– an inequality like (1.1) with Is replacing the Ic in that displayed,
and

– inequality (1.2).

(There are open questions. For example, we do not know whether, for
all convex sets, inequality (1.1) would be always true if Ic were to be
replaced with Is. However, we do not need the answer to this here.)

– Finally, at the end of §11, we turn to a simultaneous proof of
inequalities (1.1) and (1.2). For inequality (1.1) we now merely
require that it be established for convex sets with centre. For
these Ic = Is. We have that Ic is 1/4-concave by Hadwiger’s
argument. Both our inequalities are established, for centrally-
symmetric convex domains, on combining this with the preceding
support function result.

We haven’t seen inequality (1.2) elsewhere, though some that resemble it
are available. See, for example, [15], and other references mentioned near the
end of §11. There are proofs of inequality (1.1) not requiring any references
to Steiner centroids. Nevertheless we like the unified derivation of both
inequalities simultaneously.

Some of the results here, and many conjectures, were suggested by com-
putational experiments and computational results for simple shapes. All the
functionals can be calculated exactly for any convex polygon. Furthermore,
the convex hull routines of Maple and of Mathematica make the numerical
calculation of Minkowski sums of polygons very easy. Supplements to this
paper, including the Maple and Mathematica codes, are available via
http//www.maths.uwa.edu.au/~keady/papers.html

2 2Ic/π ≤ (L/(2π))4

For domains in the plane, Polya proved. inequality (1.1)

2Ic

π
≤ (

L

2π
)4

Equality is attained only for disks. Hadwiger [9] gave a different proof, one
which generalizes to IRn. We remark that a combination of this (1.1) and
another easier-to-prove inequality, represents a refinement of the classical
(A,L), area-perimeter, isoperimetric inequality:

(
A

π
)2 ≤ 2Ic

π
≤ (

L

2π
)4. (2.1)

We first note that connectedness is essential for inequality (1.1). For,
if we let D be the union of two equal disjoint disks, symmetically placed
either side of the origin so that the centroid is at the origin, we have a
counterexample. By taking the components further apart we can increase Ic

indefinitely, while L stays fixed. However, on joining the disks by a straight
line the perimeter increases and this dumbell shaped domain does satisfy
inequality (1.1).

Polya’s proof begins with conformal mapping, and requires D to be
simply connected. However, the argument establishes inequality (1.1) for
simply-connected domains. An argument now shows that it must be true
for multiply-connected ones too.
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Theorem 1 Let Dm be a multiply connected domain, and Ds be the smallest
simply connected domain with Dm ⊆ Ds. Then, if inequality (1.1) holds for
Ds, it also holds for Dm.

Proof. Denote the centroids of Dm and Ds by zm and zs respectively, and
their perimeters by Lm and Ls. We have Ls ≤ Lm (as we have removed the
holes of Dm and hence that part of the perimeter associated with them).
Denote polar moments of inertia about z by I(D, z), and, redundantly, pro-
vide a subscript c when the z is the centroid of D. Now, from properties of
zm,

Ic(Dm, zm) ≤ I(Dm, zs).

Starting from the fact that Dm ⊆ Ds

I(Dm, zs) ≤ Ic(Ds, zs) ≤
π

2
(
Ls

2π
)4 ≤ π

2
(
Lm

2π
)4.

Combining these two inequalities establishes that inequality (1.1) is true for
multiply-connected domains.

In our approach to proving inequality (1.1) we will first establish it for
convex domains.

Theorem 2 Let D be a domain, and Dc be the convex hull of D. Then, if
inequality (1.1) holds for Dc, it also holds for D.

Proof. Denote the centroids of D and Dc by zg and zc respectively, and their
perimeters by Lg and Lc. We have Lc ≤ Lg. Now, from properties of zg,

Ic(D, zg) ≤ I(D, zc).

Starting from the fact that D ⊆ Dc

I(D, zc) ≤ Ic(Dc, zc) ≤
π

2
(
Lc

2π
)4 ≤ π

2
(
Lg

2π
)4.

Combining these two inequalities establishes that inequality (1.1) is true for
general domains.

3 Minkowski sums

3.1 Definitions

Let D0 and D1 be subsets of IRn. The Minkowski sum of D0 and D1 is

D0 + D1 := {x0 + x1|x0 ∈ D0, x1 ∈ D1} .

We also define dilations of D,

tD := {tx|x ∈ D}.

The convex combination of D0 and D1 is defined

D(t) := (1− t)D0 + tD1 .

We will consider various families U of subsets of IRn which are closed
under Minkowski sums and dilations. All these families of subsets are a
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commutative additive semigroups under Minkowski summation, with the
identity {0}. These families include the following

K := {D|D is convex}.

With u a unit vector, we define the symmetrised sets

Sy(u) := {D| if x ∈ D then x + τ〈u, x〉u ∈ D, −2 ≤ τ ≤ 0}

With {ui, uj} orthonormal, we define

Sy(ui, uj) := Sy(ui) ∩ Sy(uj)

The centrally symmetric sets are defined by

C := {D| if x ∈ D then − x ∈ D}

The star-shaped sets are defined by

St := {D| if x ∈ D then τx ∈ D, 0 ≤ τ ≤ 1}

Given a family U , we define

U+ := {D|D ∈ U and D ⊂ {xn ≥ 0}}

More generally, we define

U+(u) := {D|D ∈ U and D ⊂ {x|〈x, u〉 ≥ 0}}

so that, in particular U+ = U+(en).

3.2 The context, and foundations

Borell [4] proved, in two dimensions, and denoting the torsional rigidity by
S,

S(D(t))1/4 is concave in t for 0 ≤ t ≤ 1 for D0, D1 ∈ K
Another result of Borell’s is that the transfinite diameter r(D(t)) is concave.
There is an obvious similarity with the familiar Brunn-Minkowski Theorem.

The results on torsional rigidity and on electrostatic capacity necessarily
involve proofs from analysis. One function of this paper is to use current
analytical inequalities - specifically the Prekopa-Leindler inequality - to re-
derive Hadwiger’s results on moments of inertia. The rest of this note is only
concerned with geometric domain functionals, not with the elastic torsion
problem or electrostatic capacity. Nevertheless, we note that the moment of
inertia functional is sandwiched between (appropriate numeric multiples of)
the two 1/4-concave functionals, S and r4: see [18], page 10. Actually the
area squared, which is - by our next theorem - also 1/4 concave is a better
lower bound on Ic than is S.

Theorem 3 General Brunn-Minkowski Let 0 < t < 1 and D0 and D1

be nonempty bounded measurable sets in IRn such that D(t) is also measur-
able. Then

Volume(D(t))1/n ≥ (1− t)Volume(D0)1/n + tVolume(D1)1/n (3.1)

(That is, D(t) is concave in t for 0 ≤ t ≤ 1.)
Specializing to n = 2, this becomes

Area(D(t))1/2 is concave in t for 0 ≤ t ≤ 1 . (3.2)
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See [7], Theorem 4.1. The paper [7] also explains the equivalence of this
and the Prekopa-Leindler Inequality.

Theorem 4 Let 0 < λ < 1 and let f0, f1, and h be nonnegative integrable
functions on IRn satisfying

h ((1− t)x + ty) ≥ f0(x)1−tf1(y)t, (3.3)

for all x, y ∈ IRn. Then∫
IRn

h(x) dx ≥
(∫

IRn
f0(x) dx

)1−t (∫
IRn

f1(x) dx

)t

. (3.4)

4 Notes on homogeneous concave functions

4.1 Definitions, and introduction

A functional F (D) is homogeneous of degree k if F (cD) = ckF (D) for all
D ∈ K and c ≥ 0. The functionals Area and torsional rigidity, S, are
homogeneous of degree 2 and 4 respectively. If F (D) is a functional which
is homogeneous of degree k, I will call it Minkowski-polynomial if F (D(t))
is polynomial of degree k in the variable t. A functional F (D) is said to be
nonnegative if F (D) ≥ 0 for all D, and monotone if D1 ⊆ D2 implies that
F (D1) ≤ F (D2). A functional F (D) is said to be translation-invariant if
F (c + D) = F (D) for all D and all c ∈ IR2.

The area and torsional-rigidity are but two of many nonnegative, mono-
tone, translation-invariant homogeneous domain functionals. Denote by
Ic(D) the polar moment of inertia (about the centroid zc). This is ho-
mogeneous of degree 4. (Furthermore, although Ic itself is not Minkowski-
polynomial, the product AIc of the area with Ic is Minkowski-polynomial of
degree 6.)

4.2 An elementary result

Ic(D(t) and the other functionals treated in this note are homogeneous.
This may help in establishing the concavity properties. This little lemma
gets used (though not dignified by being called a Lemma) in [7].

Lemma 1 (Homogeneity Lemma.) Consider domains in a family closed
under Minkowski sums and under dilations. If F is positive and homoge-
neous of degree 1

F (sD) = sF (D) ∀s > 0, D ,

and quasiconcave

F (D(t)) ≥ min(F (D(0)), F (D(1))) ∀0 ≤ t ≤ 1 ∀D0, D1, (4.1)

then it is concave:

F (D(t)) ≥ (1− t)F (D(0)) + tF (D(1)) ∀0 ≤ t ≤ 1 .
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Proof. See [7]. Replace D0 by D0/F (D0), D1 by D1/F (D1). Using the
homogeneity of degree 1, and applying (4.1) we have

F ((1− t)
D0

F (D0)
+ t

D1

F (D1)
) ≥ 1 .

With

t =
F (D1)

F (D0) + F (D1)
, so (1− t) =

F (D0)
F (D0) + F (D1)

,

the last inequality on F becomes

F

(
D0 + D1

F (D0) + F (D1)

)
≥ 1 .

Finally, using the homogeneity we have

F (D0 + D1) ≥ F (D0) + F (D1) ,

and using homogeneity again,

F ((1− t)D0 + tD1) ≥ (1− t)F (D0) + tF (D1) ,

as required.

5 Power concave functions

When α > 0, we say that a nonnegative function f is α-concave if fα is con-
cave. See also [7]§9. We say that f is 0-concave, or log-concave, if log(f) is
concave. (For −∞ < α < 0, the notation may not yet be standardised. How-
ever, in some definitions, when α < 0, it is said that a nonnegative function
f is α-concave if fα is convex.) A nonnegative function f is said to be −∞-
concave, or quasiconcave, if f((1− s)t0 + st1) ≥ min(f(t0), f(t1))∀s ∈ [0, 1].

Here are some properties.

1. If a nonnegative f is α-concave, then f is β-concave for all β ≤ α.

2. If a nonnegative f is twice continuously differentiable, f is α-concave
iff ff ′′ + (α− 1)f ′2 ≤ 0.

3. For any α ≥ 1, the set of nonegative α-concave functions forms a
(convex) cone.

4. If α ≥ 0, β ≥ 0, and f is α-concave, g is β-concave, then the product
fg is γ-concave where γ−1 = α−1 + β−1.
The product of log-concave functions is log-concave.

6 Lead-in examples

Consider two equal equilateral triangles, D0 and D1, each with a median on
the y-axis. D0 points downward, and has vertices

A0 : (1, yc,0 +
1√
3
), B0 : (−1, yc,0 +

1√
3
), (0, yc,0 −

2√
3
).
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Figure 1: The Minkowski sum of equilateral triangles D0 and D1 in various
positions. (D0 + D1)/2 is a regular hexagon, in fact in the same position in
the leftmost and rightmost diagrams.

D1 points upward, and has vertices

A1 : (−1, yc,1 −
1√
3
), B1 : (1, yc,1 −

1√
3
), (0, yc,1 +

2√
3
).

See Figure 1.
The set H = (D0 + D1)/2 is a regular hexagon, with a pair of sides

parallel to the x-axis, and its centre at (0, (yc,0 + yc,1)/2).
We have

area(D0) =
√

3 = area(D1) while area(H) =
3
√

3
2

.

The fact that
area(H) ≥ min(area(D0), area(D1))

accords with the quasiconcavity of area(D(t)) as required by the classical
Brunn-Minkowski Theorem.

We next consider moments about the y = 0 axis, specifically

I22(D) =
∫

D
y2

Of course this functional is not translation-invariant. Let’s look at a few
instances.

• yc,0 = 2/
√

3 and yc,1 = −2/
√

3: In this situation, the vertices of the
triangles on the x = 0 axis are both at the origin.

I22(D0) =
3
√

3
2

= I22(D1) while I22(H) =
5
√

3
16

Here, I22(D(t)) is definitely not quasiconcave.

• yc,0 = 2/
√

3 and yc,1 = 1/
√

3: In this situation, both of the triangles
lie in the upper half-space (and the origin is on the boundary of each
of them).

I22(D0) =
3
√

3
2

, I22(D1) =
√

3
2

, while I22(H) =
41
√

3
16

With a bit more calculation, this time it can be shown that I22(D(t))
is quasiconcave. This is consistent with Hadwiger’s Theorem 2.

8



• Our main results concern moments about the centroid, and, in partic-
ular, we will need to consider moments when the centroid of D(t) lies
on y = 0. So, for our final example here, consider:
yc(H) = 0 with yc,0 = 0 and yc,1 = 0: In this situation,

I22(D0) =
√

3
6

, I22(D1) =
√

3
6

, while I22(H) =
5
√

3
16

There are possibly two separate uses for this example.

– I22,c is quasi-concave.

– There is perhaps too much symmetry in this t = 1/2 case to
truly represent enough of Hadwiger’s Theorem 3. For general t,
the centroids of D0 and D1 are not at the origin (while that of
D(t) is). Nevertheless, our example is consistent with the result
that this I22(D(t)) is again quasiconcave.

7 Hadwiger’s proofs: 1/4-concavity of Ic

Hadwiger’s approach begins considering sets in U+.

Theorem 5 Define, for each unit vector u, and sets D in U+(u)

T+(D,u) =
∫

D
〈u, x〉2

then T+(D(t), u) is 1/(n+2)-concave.

In view of the counter-examples to concavity when one takes moments
of inertia about y = 0 when the sets are not restricted to being in the upper
half-plane, the result is striking.

We will begin with our own proof based on the Prekopa-Leindler Theo-
rem 4, and after this give Hadwiger’s proof.
Proof of Theorem 5, when D0 and D1 are convex, from the Prekopa-Leindler
inequality. In Theorem 4, Theorem 7.1 of [7], we are required to define
functions on the whole of IR2 and, to do this usefully, we replace the y2 with
y2
+, i.e. a function which is 0 for y ≤ 0. It is essential that the sets D0 and

D1 are in the upper half-plane. The function z = (x, y) 7→ y2 is convex,
which doesn’t help, but, in y > 0, it is also log-concave.
(1) The function z = (x, y) 7→ y2

+ =: f(z) is log-concave on the whole space.
For consider f(z) and z0 = (x0, y0), z1 = (x1, y1). Without loss of generality,
assume y0 ≤ y1. To establish log-concavity, we need to show

f(
z0 + z1

2
) ≥

√
f(z0)f(z1).

Now, if either y0 ≤ 0 or y1 ≤ 0 this is trivially satisfied, so assume 0 < y0 ≤
y1. Then by the AGM inequality

f(
z0 + z1

2
) = (

y0 + y1

2
)2 ≥ y0y1 =

√
f(z0)f(z1),

as required. More generally, let zt = (1− t)z0 + tz1. Then

f(zt) ≥ f(z0)1−tf(z1)t.
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(2) The characteristic functions χ of the convex sets satisfy

χD(t)((1− t)(z0) + t(z1)) = χ(D0)(z0)1−tχ(D1)(z1)t

(i.e. equality, not merely that the lhs is greater than or equal to the rhs).
Items (1) and (2) combine to give

f(zt)χD(t)(zt) ≥ (f(z0)χD0(z0))
1−t(f(z1)χD1(z1))

t.

Now an application of the Prekopa-Leindler Theorem yields the log-concavity
of I22(D+(t)). The homogeneity then gives its (1/4)-concavity.

Though we do not yet see any application, we note that the same argu-
ment applies to any function f(z) = (y+)α for any α > 0. In n dimensions
we would get 1/(n + α)-concavity.

Hadwiger’s proof of Theorem 5. The starting point for this is some ma-
nipulation to reduce this problem to an application of the Volume Brunn-
Minkowski Theorem in (n + 2) dimensions. In our account now, we will
specialise to n = 2 dimensions.

Lemma 2 Let u be a unit vector. Define map from the two-dimensional
D ∈ U+(u) to a IR4 by

x̃ =


x1

x2

0
0

+(u1x1+u2x2)(σ3


0
0
1
0

+σ4


0
0
0
1

 ), 0 ≤ σ3 ≤ 1, 0 ≤ σ4 ≤ 1

Associated with the plane domains D(t) define 4-dimensional domains ˜D(t).
(i)

T+(D(t), u) = Volume( ˜D(t))

(ii) The tilde-construction and Minkowski summation commute

˜D(t) = (1− t)D̃0 + tD̃1

Proof. For ease of exposition, we choose to set u = e2.
(i)

x̃ = xe1 + ye2 + y(σ3e3 + σ4e4), 0 ≤ σ3 ≤ 1, 0 ≤ σ4 ≤ 1

Now the volume of D̃ is

Volume(D̃) =
∫ ∫

D

∫ 1

0
y dσ3

∫ 1

0
y dσ4dydx

= T+(D) = I22(D)

(ii) The key observation that establishes (ii) is that at fixed σ3 and σ4, the
map from x to x̃ is linear.

Hadwiger then establishes Theorem 5 using Lemma 2.

We expect that if we were to replace I22 by IO (i.e. the log-concave
function y2 by the function r2 which appears to have no useful concavity
properties) that there would be no result.

Although Theorem 5 makes a start, we have some way to go before we
get to establish the (1/4)-concavity of Ic(D(t)). The two main steps are as
follows.
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(i) We will extend the result from U+ to all of U . See Lemmas 4 and 5.

(ii) Having established the result for some class of domains U for all direc-
tions u, we will obtain the polar-moment of inertia result on Ic(D(t)).
See Theorem 3

There is, though, one case where (i) is straightforward, and we treat that
now. Suppose that D0 and D1 are in C, i.e. are centrally symmetric, with
both being centred on the origin. Now C is closed under Minkowski sums
and under dilation, with D(t) ∈ C when both D0 and D1 are in C. Now
write D = D+ ∪D−, with D+ = D ∩ {y ≥ 0} and D− = D ∩ {y ≤ 0}. Now

I22(D) = I22(D+) + I22(D−)

and,
I22(D+) = I22(D−) using D ∈ C

Now, by Lemma 2, I22(D+) is (1/4)-concave, and hence so to is I22(D).
We also note, in preparation for (ii), that we could use any direction u,
not merely the direction e2 used as in the example, and indicated in the
subscripting I22.

We will return to the general case later, but we now turn to task (ii),
getting the result for Ic(D) not merely the I(D,u) = T (D,u).

Lemma 3 Suppose that T (D,u) = uTM(D)u, with M(D) a n by n positive
definite matrix function of D only (i.e. not u). It clearly satisfies

T (D,−u) = T (D,u).

Suppose also that each entry of M(D) is homogeneous to the same power
so that clearly T (D,u) is homogeneous to this power.
Suppose that T (D(t)) is, under Minkowski-sums, α-concave for some α > 0.
Then i(D) = trace(M(D)) is homogenous to the same power, and

i(t) = trace(M(D(t)))

is also α-concave.

Proof. It suffices to allow D0 and D1 to have the property that i(0) = 1 =
i(1). The homogeneity of i(D), which is immediate from the hypotheses
on the matrix M(D), ensures that we merely need to establish that i(t)
is quasiconcave after which an the Homogeneity Lemma will give that it is
power-concave. We will have established this once we show i(t) ≥ 1 (for all
t in [0, 1]).

Now M is positive definite, so its trace, the sum of its eigenvalues is
positive, and

trace(M(D)) =
n∑

j=1

T (D,uj)

for any orthonormal basis {uj}. Our goal is to choose an orthornormal basis
which will help in establishing i(t) ≥ 1.

Define
f(u) = T (D0, u)− T (D1, u).
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As elsewhere, we specialise to the 2 by 2 matrix case appropriate to
domains in the plane. (The general case is treated in Hadwiger’s paper.)
Then f is ‘defined on a circle’. We will show that there are directions at
right angles so that f(u1) = f(u2), and to do this, define

g(θ) = f

(
cos θ
sin θ

)
− f

(
− sin θ
cos θ

)

Using f(−u) = f(u) we find

g(θ) + g(θ +
π

2
) = 0.

Hence g is sometimes nonnegative and sometimes nonpositive, and hence
there is a θ∗ at which g(θ∗) = 0. This ensures that we have the directions
at right angles so that f(u1) = f(u2).

We now translate this into T (D(t), u) notation. We have two equations
from the (scaling) hypotheses on D0 and D1, and, in particular, these give
f(u1) + f(u2) = 0. Combining this with our choice of u1, u2 with f(u1) =
f(u2) forces f(u1) = 0 = f(u2). Thus

T (D0, u1) + T (D0, u2) = 1
T (D1, u1) + T (D1, u2) = 1

T (D0, u1) = T (D1, u1)
T (D0, u2) = T (D1, u2)

Now we have from the quasiconcavity of T (D(t), uj),

T (D(t), u1) ≥ T (D0, u1) ( = T (D1, u1) )
T (D(t), u2) ≥ T (D0, u2) ( = T (D1, u2) )

i(t) ≥ i(0) = 1 ( = i(1) )

where the last inequality is merely the result of summing the two preceding
ones. This establishes the quasiconcavity of i(t) and the proof is complete.

For centrally-symmetric sets, Theorem 5 and Lemma 3 in combination
establish Hadwiger’s Theorem that, for such sets, Ic(D(t))1/4 is concave.
We now turn to extending this so that it applies more generally, and not
merely to bodies ‘with centre’. The key ingredient in this will be Theorem 6,
whose proof will depend on Lemmas 4 and 5. (The results of Lemmas 4,
5 and Theorem 6 would be proven if we had established them for domains
symmetrised about the axis x = 0 as this symmetrisation preserves yc and
I22(D). However, this observation is not needed for our proofs.)

Lemma 4 Fix t, 0 < t < 1. Choose axes so that y = 0 passes through D(t).
(In the application, in [9], yc(D(t)) = 0.)
For each domain D, define

D+ = D ∩ {y > 0}, D− = D ∩ {y < 0}.

Define

D0(τ) = D0 + {(0, τ/(1− t))}, D1(τ) = D1 − {(0, τ/t)}

12



so that, again, for all τ ,

D(t) = (1− t)D0(τ) + tD1(τ)

Define

ξ(τ) =
I22((D0(τ))+)
I22((D0(τ))−)

η(τ) =
I22((D1(τ))+)
I22((D1(τ))−)

.

Then τ can be chosen so that ξ(τ) = η(τ).

Proof. When τ is large and positive, then ξ(τ) is positive infinity, and
η(τ) is 0. Similarly, when τ is large and negative, then ξ(τ) is 0, and η(τ)
is positive infinity. Consider monotonically increasing τ from some large
negative value. Both ξ(τ) and η(τ) are monotonic, continuous functions.
ξ is a nonincreasing function, η is a nondecreasing function. Thus, by the
Intermediate Value Theorem, there exists a τ∗ at which ξ(τ∗) = η(τ∗).

Lemma 5 Fix t, 0 < t < 1. Choose axes so that y = 0 passes through D(t).
(In the application, in [9], yc(D(t)) = 0.)
For each domain D, define

D+ = D ∩ {y > 0}, D− = D ∩ {y < 0}.

Suppose that
D(t) = (1− t)D0 + tD1

with
I22((D0(τ))+)
I22((D0(τ))−)

=
I22((D1(τ))+)
I22((D1(τ))−)

(= µ).

Then
I22(D(t))1/4 ≥ (1− t)I22(D0)1/4 + tI22(D0)1/4

Proof. From Theorem 5

I22((D(t))+)1/4 ≥ (1− t)I22((D0)+)1/4 + tI22((D1)+)1/4

I22((D(t))−)1/4 ≥ (1− t)I22((D0)−)1/4 + tI22((D1)−)1/4

Thus, using properties of Minkowski sums,

I22(D(t)) ≥ I22((D(t))+) + I22((D(t))−)
≥ E4

− + E4
+ (7.1)

where

E− = ((1− t)I22((D0)+)1/4 + tI22((D1)+)1/4)
E+ = ((1− t)I22((D0)−)1/4 + tI22((D1)−)1/4)
E = ((1− t)I22((D0))1/4 + tI22((D1))1/4).

Now
I22((Dj)−) =

I22(Dj)
1 + µ

, I22((Dj)+) =
µI22(Dj)

1 + µ
.

13



Hence the expressions E satisfy

E+ = (
µ

(1 + µ)
)1/4E, E− = (

1
(1 + µ)

)1/4E.

On entering this in the expression at the right at inequality (7.1) we have

I22(D(t)) ≥ (
µ

(1 + µ)
)E4 + (

1
(1 + µ)

)E4 = E4

which is the result we were required to prove.

Theorem 6 Define, for each unit vector u, and sets D in U

Ic(D,u) =
∫

D
〈u, x〉2 − (

∫
D〈u, x〉)2∫

D 1

then Ic(D(t), u) is 1/(n+2)-concave in t.

Proof. We choose the origin at the centroid of D(t). We use the two im-
mediately preceding lemmas and the fact that, for each of D0 and D1, the
moment taken about the lines through its centroid will be less than the
moment taken about any parallel line.

Proof of Hadwiger’s Ic Theorem of §1. The result follows from Theo-
rem 6 and, with T (D,u) = Ic(D,u), from Lemma 3.

We remark that Hadwiger had yc(D(t)) = 0 in his applications of Lem-
mas 4 and 5, but, while this is needed for the Ic result, it is not needed
for the actual results of the Lemmas. It is an open question whether other
forms of centroids, e.g. the Steiner curvature centroid might be used with
worthwhile consequences. That we are using the ordinary centroid does get
use in the final sentence of Theorem 6.

8 Support functions

We use the letter p for the support function as in [6] and Santalo’s book [19].
An adequate description of p is as ‘the perpendicular distance from the origin
to the tangent’. We will use the letter φ exactly as in Santalo’s book, and
define

ϕ = φ +
π

2
.

These notes were begun with a focus on the plane case and for that ϕ, the
slope of the tangent associated with p, is acceptable. The radius of curvature
is

ρ = p + p̈, where ḟ =
df

dϕ
, ds = ρdϕ .

We must have ∫ 2π

0
ρ(ϕ) cos(ϕ) dϕ = 0 =

∫ 2π

0
ρ(ϕ) cos(ϕ) dϕ.

Then the area and perimeter are given by

A = Area(D) =
1
2

∫ 2π

0
pρ dϕ =

1
2

∫ 2π

0
(p2 − ṗ2)dϕ, (8.1)

L =
∫ 2π

0
ρ dϕ =

∫ 2π

0
p dϕ . (8.2)
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D is convex if and only if ρ ≥ 0. In the case of a polygon, for example, we
might interpret ρ as a nonnegative measure. We will merely be assume that
the boundaries of D, and the functions p, are sufficiently smooth for any
operations we perform. The set S of nonnegative support functions forms a
cone: S is convex, and, if t > 0 and p ∈ S, then tp ∈ S.

We now suppose that we have two convex domains D0 and D1. We
denote Area(D0) = A0 and Area(D1) = A1. We have the following pretty,
and very well-known, result:

Lemma 6 For convex sets D0, D1, the support function for D(t) is given
by

pt = (1− t)p0 + tp1 (8.3)

In particular, the preceding lemma yields that

L(t) := L(D(t)) = (1− t)L0 + tL1 , (8.4)
A(t) := Area(D(t)) = (1− t)2A0 + 2t(1− t)A0,1 + t2A1 , (8.5)

where the mixed-area A0,1 satisfies

A0,1 := A(D0, D1) =
1
2

∫ 2π

0
(p0p1 − ṗ0ṗ1) dϕ . (8.6)

(We remark that when D1 = B(0, ρ1) is a disk, these immediately give us
the formulae for the mixed area and the equivalence of the area Brunn-
Minkowski and the classical isoperimetric inequality. We will see this in
§11.2.)

There are many nice properties of support functions. Here is one. See
[20], p37 or the first page of [14].

Theorem 7 If 0 ∈ D ⊆ D̂ then 0 ≤ p ≤ p̂.

We do not use, but state:
Theorem.Let C denote the convex hull of the union of the convex domains
D0 and D1. Then, the support functions satisfy

pC = max(pD0 , pD1).

. See [5], p56.

Henceforth, we assume that the origin is in any domain D. (In §9, the
origin will often be at the point of central symmetry. In §11, the origin will
often be at the Steiner centroid.)

(Further general references on convex domains and their support func-
tions include [3], [6], [8], [11], [14], [16], [20].)

9 Central, or Blaschke, symmetrisation

A major function of this section is to show that to establish inequality (1.1),
it will suffice to establish it for centrally-symmetric domains. In central-
symmetrisation, we start with the support function p of a convex domain,
and create another convex domain D∗ whose support function is given by

p∗ =
p(ϕ) + p(ϕ + π)

2
.

Central symmetrisation preserves L. It increases Ic:
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Lemma 7

Ic(D∗)1/4 ≥ 1
2
(Ic(D)1/4 + Ic(−D)1/4) = Ic(D)1/4

Proof. Note that the support function of −D is p(ϕ + π). The result of the
Lemma then follows from the 1/4-concavity of Ic.

Thus, if there were to be a domain which did not satisfy inequality (1.1),
there would be one which was centrally symmetric. We will, however, in
§10, show that there is no such centrally symmetric domain. A key point
is that for such centrally symmetric domains, the centroid and the Steiner
curvature centroid, defined soon, coincide at the origin. In notation which
will be defined, for centrally-symmetric domains, Ic = Is.

9.1 A side track: alternative proofs of (1.1)

There are many other symmetrisations possible. For example, at fixed ϕ0

and m,

p∗(ϕ) :=
1

2m

2m−1∑
j=0

p(ϕ− ϕ0 +
jπ

m
).

Again, this preserves L and (again using the 1/4-concavity) increases Ic.
The choice of origin ϕ0 for ϕ is arbitrary.

The 1/4-concavity can be expressed in many ways. When, as with each
Dj being a rotated version of the same initial set D0, the Ic(Dj) are all
equal, we have

Ic(
1
m

m∑
j=1

Dj)1/4 ≥ 1
m

m∑
j=1

Ic(Dj)1/4 = Ic(D0)1/4.

Taking the limit as m tends to infinity, we get that Ic is maximised at
fixed L when D is a disk.

10 Expressions for IO, etc. in terms of p

10.1 More geometry

In our usage, ϕ is the angle between the tangent to the curve, the boundary
of D, and the x-axis. (This is as in Behnke et al. Many authors use notation
which differs from our ϕ by π/2. These include: Santalo’s φ as in his Fig
1.1; the θ in [6] as in his Fig 2; and the θ in [8].) We need to investigate
x(ϕ) and y(ϕ) on the boundary of D. We have

dx

dϕ
= ρ cos(ϕ),

dy

dϕ
= ρ sin(ϕ), (10.1)

x sin(ϕ)− y cos(ϕ) = p. (10.2)

There are numerous readily verified identities, e.g. ρ = −ẍ sin(ϕ)+ ÿ cos(ϕ).
We have

ṗ = x cos(ϕ) + y sin(ϕ) + ẋ sin(ϕ)− ẏ cos(ϕ) = x cos(ϕ) + y sin(ϕ) , (10.3)

and, from (10.1) and (10.3),

d

dϕ
(x2 + y2) = 2ρ(x cos(ϕ) + y sin(ϕ)) = 2ρṗ =

d

dϕ
(p2 + ṗ2) ,
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or, more simply, from squaring both (10.3) and (10.2) and adding,

p2 + ṗ2 = x2 + y2 . (10.4)

We also have

x = ṗ cos(ϕ) + p sin(ϕ)
y = ṗ sin(ϕ)− p cos(ϕ)

Using ϕ to parametrise the boundary of our sets D(t),

∂D(t) = {(xt(ϕ), yt(ϕ))|0 ≤ ϕ ≤ 2π},

is very convenient when dealing with Minkowski combinations. We have

xt = (1− t)x0 + tx1, yt = (1− t)y0 + ty1 ,

following from pt = (1− t)p0 + tp1 and the corresponding relation for ρ.

10.2 Moments of inertia, etc.

We now turn to moments of inertia. Applications of Green’s Theorem give

A =
1
2

∮
(xdy − ydx) =

1
2

∫ 2π

0
pρdϕ (10.5)

xcA =
1
2

∮
x2dy (10.6)

ycA = −1
2

∮
y2dx (10.7)

Io = I(0, D) =
1
4

∮
(x2 + y2)(xdy − ydx) (10.8)

=
1
4

∫ 2π

0
(p2 + ṗ2)pρdϕ . (10.9)

I(∂D) =
∫ 2π

0
(x2 + y2)ρ dϕ (10.10)

=
∫ 2π

0
(p2 + ṗ2)ρdϕ (10.11)

Where one sees a ρdϕ, this can be written ds.
Eliminating ρ from the preceding equations using ρ = p + p̈ and inte-

grating by parts gives

Io = I(0, D) =
1
12

∫ 2π

0
(3p4 − 6p2ṗ2 − ṗ4)dϕ . (10.12)

I(∂D) =
∫ 2π

0
p(p2 − ṗ2)dϕ (10.13)

while the corresponding expressions for L and A were given in equations (8.2)
and (8.1). Concerning equation (10.13), we remark that I(∂D) is the mo-
ment of inertia of a wire, of unit mass per unit length, in the shape of ∂D,
the boundary of D. Another domain functional that will be used later is

Z =
1
2

∫ 2π

0
(3p2 − ṗ2)dϕ (10.14)
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11 Isoperimetric inequalities derived from Brunn-
Minkowski

We now turn to domains D0 and D1 where the Steiner curvature centroid
coincides with the ordinary centroid, and we take this at the origin O. In
fact, in what follows, it will suffice to take D1 = B(0, ρ1) as the disk centered
at the origin and of radius ρ1.

11.1 The Steiner curvature centroid

The Steiner curvature centroid for a convex domain D, with support function
p, is the point (xs, ys) where

xs = − 1
π

∫ 2π

2
p(ϕ) sin(ϕ) dϕ, ys =

1
π

∫ 2π

2
p(ϕ) cos(ϕ) dϕ.

We have that (xs, ys)6∈∂D; (xs, ys) ∈ D. See [3], p58.

Theorem 8 Suppose that domains D0 and D1 have Steiner centroids s0,
s1 respectively. Then the Steiner centroid of D(t) is s(t) = (1− t)s0 + t s1.
In particular, if s0 = 0 = s1, then s(t) = 0 for all t with 0 ≤ t ≤ 1.

11.2 A lead-in isoperimetric inequality example, A, L

We will derive isoperimetric inequalities from Brunn-Minkowski results, and
begin with illustrating this with the ordinary area Brunn-Minkowski. Take
D1 = B(0, ρ1), so that the support functions satisfy pt = (1 − t)p0 + tρ1.
Substituting this into equation (8.1) we find

A(t) = (1− t)2A0 + (1− t)tL0ρ1 + t2πρ2
1.

Then we find

A(t)− ((1− t)
√

A0 + tρ1
√

π)2

(1− t)t
= (L0 − 2

√
πA0)

and we see that the Brunn-Minkowski 1/2-concavity of area is equivalent to
the classical isoperimetric inequality L2 ≥ 4πA.

(It can also be shown that A(D(t))/L(D(t)) is concave. The result
is in [3], but is easy to prove. One can also show, easily enough, that√

Z(D(t)) is concave. Though, when D1 = B(0, ρ1, it also happens that
Z(D(t))/L(D(t)), we do not know what is true in general. As our primary
focus is on the behaviour of moments of inertia, we do not pursue matters
concerning Z(D) here.)

11.3 Is, I(∂D) and L

We now prepare to perform similar calculations with moments of inertia.
On substituting pt = (1− t)p0 + tρ1 into equation (10.12) we find:

Is(t) = (1− t)4Is(D0) + ρ1t(1− t)3I(∂(D0) +
ρ2
1t

2(1− t)2Z(D0) +

ρ3
1t

3(1− t)L0 + t4
πρ4

1

2
(11.15)
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Define the quadratic polynomial

q(t) :=
I(D(t))− (I(D(0))1/4(1− t) + I(D(1))1/4t)4

t(1− t)
. (11.16)

Theorem 9 Suppose that D1 is the disk B(0, ρ1), that D0 ∈ K, and that,
for 0 ≤ t ≤ 1 the Steiner curvature of D(t) coincides with its ordinary
centroid, each being at the origin. Then q(t) ≥ 0 for 0 ≤ t ≤ 1 and hence
inequalities (1.1) and (1.2) are satisfied.

Proof. Now IO(D(t)) is 1/4-concave by Hadwiger’s result. This means that
the quantity q(t) defined in equation (11.16) is non-negative for 0 ≤ t ≤ 1.
In particular q(0) ≥ 0 and q(1) ≥ 0. Now

q(1) = ρ3
1(L0 − 4(

π3I0

8
)1/4) , (11.17)

and q(1) > 0 iff (L0/(2π))4 ≥ 2I0/π which is inequality (1.1) (for domains
for which the Steiner centroid coicides with the centroid). Also

q(0) = ρ1(I(∂D)− 4(
πI3

0

2
)1/4) . (11.18)

which is inequality (1.2).
Corollary.For any centrally-symmetric convex set D = D0, inequalities (1.1)
and (1.2) are satisfied.

11.4 Knothe 1957

Some results which appear closely related to inequality (1.2) are suggested
by Knothe [15] §3. Knothe proves his results for 3-dimensional domains. To
assist readers in adapting these to the 2-dimensions and comparing these re-
sults with those in this paper, we record some items concerning the notation
in [15]§3:

• O (denoted C in [15]) is the centre of K = D0. Our B is denoted by
S in [15].
Both the centroid and the Steiner centroid are at O.

• Λ is a line through the centre O. ([15] uses a plane P .)

• s is the distance from Λ.

• B is the disk, centre O, with
∫
B s2 =

∫
D0

s2.

Let us now rotate the coordinate axes so that s = x.

Some results in [15] are recognizably the same as some in this paper.
Theorem (Knothe). Let D(t) = (1− t)D0 + tB, with D0 and B as above.
Write

I11(D) =
∫

D
x2

so that I11(D0) = I11(B). Then

I11(D(t)) ≥ I11(D0) = I11(B). (11.19)
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Inequality (11.19) is essentially equation (45) of [15]. This result of
Knothe’s follows from Theorem 5 (along the lines of the discussion in §7,
just before the statement of Lemma 3).

[15] also gives an isoperimetric inequality – in [15] for 3 dimensions, but
here adapted to 2 – of the form:

(
∫
∂D x2)4

(
∫
D x2)3

≥ (
∫
∂B x2)4

(
∫
B x2)3

=
π4

(π/4)3
= 64π , (11.20)

(
∫
∂D y2)4

(
∫
D y2)3

≥ (
∫
∂B y2)4

(
∫
B y2)3

=
π4

(π/4)3
= 64π . (11.21)

See [15], inequality (49). More generally, this is, for any unit direction u.

(
∫
∂D〈x, u〉2)4

(
∫
D〈x, u〉2)3

≥ 64π .

We can re-write our inequality (1.2) as

(
∫
∂D r2)4

(
∫
D r2)3

≥ (
∫
∂B r2)4

(
∫
B r2)3

=
(2π)4

(π/2)3
= 128π . (11.22)

We do not know if it is possible to deduce inequality (11.22) from inequali-
ties (11.20,11.21), or vice versa.

Inequality (11.21) is also proved – along with a generalization associated
with D lying in a sector rather than merely the special-case of a half-space
– in a paper by Payne and Weinberger reported on p3 of [1].

11.5 Further inequalities involving I0 and I(∂D)

Some little-known isoperimetric inequalities can be easy to find. For exam-
ple, we have

2I0

π

L

2π
≥ A

π

I(∂D)
2π

. (11.23)

This inequality follows from an application of Chebyshev’s inequality ([17],
p40). One uses a weight ρ in the integrals and the fact, depending on the
positivity of ρ, that p and p2 + ṗ2 vary in the same direction.

12 Conclusion, and further isoperimetric inequal-
ities

There are many related inequalities already in print, including some in [9].
Products of the principal moments are also of interest. Sylvester’s problem
in geometric probablity was a motivation for some of these. Sylvester’s
problem is as follows: Given a convex set D in the plane, and 4 points
chosen at random from it, what is the probability that the four points form a
convex quadrilateral. The probablity can be expressed in terms of moments
of inertia and the question arose as to which convex sets, with a given area
say, make this probability largest, and which smallest. The answers involve
ellipses at one extreme and triangles at the other. The key work on this
was done by Blaschke and is reported in his 1923 book. (There are many
accessible modern references, e.g. [19].)
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While the 1/4-concavity of Ic, and its n-dimensional generalization 1/(n+
2)-concavity, was a major result in [9], there were other items in [9] indepen-
dent of this. These concern products of inertia. To give a flavour of some of
these we quote from Mathematical Reviews.

Busemann’s Math. Reviews MR0080942 review of [9]:
A functional ϕ(K) defined on the convex bodies in IRn is concave
if ϕ(λK + µL) ≥ λϕ(K) + µϕ(L). The norm of a convex body

is its average width multiplied by π
1
2n/Γ(1

2n). For a concave
functional ϕ(K) which is invariant under motion of K the sphere
yields the maximal value among all bodies with a given norm.
For a given convex body K denote by S and S0 the spheres which
have the same norm and volume as K. Put I0(K) = 1 and

Ir(K) = cr
−1
∫

K
· · ·
∫

K
|s, p1, · · · , pr|2dp1 · · · dpn(1 ≤ r ≤ n),

(12.1)
where cr are numerical constants (given in equation (4c) of [9]),
s is the center of gravity of K, |s, p1, · · · , pr| is the volume of the
r-simplex with vertices s, p1, · · · , pr; and pj range independently
over K. Then

I1(S) ≥ I1(K) ≥ I2(K)1/2 ≥ · · · ≥ In(K)1/n ≥ In(S0), (12.2)

Ia(K)b−cIb(K)c−aIc(K)a−b ≥ 1 for 0 ≤ a < b < c ≤ n. (12.3)

I1(K) is, of course, the ordinary polar moment of inertia of K.
The first inequality is proved by showing that I1(K)1/(n+2) is
a concave functional. It was known previously only in the case
n = 2 (see [18] MR 13, 270)

In 2 dimensions, n = 2, ‘having the same norm’ means ‘having the same
perimeter’.

An ingredient in the proof if inequalities (12.2) is the fact that the mo-
ment of inertia tensor is positive definite. In particular, all roots of the
characteristic polynomial are real, and, as a consequence various coefficient
inequalities, given in [10] hold. However, when n = 2, the chain of inequal-
ities in the inner parts of (12.2) follows simply from the AGM inequality.
(Let M be the moment of inertia matrix, with moments taken about the cen-
troid. Let its eigenvalues be λ1 and λ2. Then I1 = λ1 + λ2 and I2 = 4λ1λ2,
and the AGM inequality is that I1 ≥

√
I2.)

Various contemporary papers are also concerned with ellipses associated
with convex domains. A common notation for the Legendre ellipsoid (the
ellipsoid associated with the moment of inertia matrix M) is Γ2D. This
ellipsoid has the same centroid as D and the same moment of inertia matrix.
In 2 dimensions we have the following.

• The moment of inertia matrix for the disk B(0, ρ1) is ρ4
1π/4 times the

identity matrix.

• The volume of the Legendre ellipsoid (area in 2 dimensions) is

Volume(Γ2D) = 2
√

π(det(M))1/4 = 2
√

π(λ1λ2)1/4,

where λ1, λ2 are, as above, the eigenvalues of M .
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• The isoperimetric inequality, (when n = 2, the rightmost inequality
in (12.2)) is given in Blaschke’s 1923 book, associated with Sylvester’s
problem, and is equivalent to the following.

Theorem (Blaschke 1918, John 1973, Petty). If D is star-shaped about the
origin, then V (Γ2D) ≥ V (D) with equality if and only if D is an ellipsoid
centred at the origin.
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