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Abstract. Among others we shall prove that an exponentially bounded evo-
lution family U = {U(t, s)}t≥s≥0 of bounded linear operators acting on a

Banach space X is uniformly exponentially stable if and only if there exists

q ∈ [1,∞) such that

sup
t≥0

 t∫
0

||U(t, τ)∗x∗||qdτ


1
q

= M(x∗) < ∞, ∀x∗ ∈ X∗.

This result seems to be new even in the finite dimensional case and it is the
strong variant of an old result of E. A. Barbashin ([1]Theorem 5.1).

1. Introduction

The well-known theorem of Datko says that for an exponentially bounded and
strongly continuous evolution family U = {U(t, s)}t≥s≥0 of bounded linear operators
acting on a Banach space X the following three statements are equivalent:

(i) The family U is uniformly exponentially stable, that is there exist the con-
stants ν > 0 and N > 0 such that

||U(t, s)|| ≤ Ne−ν(t−s), ∀t ≥ s ≥ 0.

(ii)( Strong Datko’s Condition) There exist p ≥ 1 and Mp > 0 such that

sup
s≥0

 ∞∫
s

||U(t, s)x||pdt

 1
p

≤ Mp||x|| for all x ∈ X. (SDC)

(iii) (Uniform Datko’s Condition) The following inequality holds:

sup
s≥0

 ∞∫
s

||U(t, s)||pdt

 1
p

:= Kp < ∞. (UDC)

The equivalence between (i) and (ii) can be stated under the general assumption
that for each x ∈ X the map t 7→ ||U(t, s)x|| is measurable even if the family U
is not strongly continuous. It is easily to see that the measurability of the map
t 7→ ||U(t, s)|| relies by the strong continuity of the family U. Moreover, either of
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the conditions (SDC) or (UDC) may be replaced by the following more general
condition, originally given by S. Rolewicz.

(iv) (Strong Rolewicz’s Condition) There exists a nondecreasing function φ :
R+ → R+ which φ(t) > 0 for all t > 0 such that

sup
s≥0

∞∫
s

φ(||U(t, s)x||)dt < ∞, for all x ∈ X with ||x|| ≤ 1.

Particularly this shows that (i) and (ii) can be reformulated with p > 0 instead of
p ≥ 1.

For much more details, proofs and others formulations of this type theorems we
refer to [6], [7], [10], [12], [14],[4], [3] and references therein.

On the other hand a reformulation of an old result of E. A. Barbashin ([[1],
Theorem 5.1], [9]) reads as follows:

Let U = {U(t, s) : t ≥ s ≥ 0} be an exponentially bounded evolution family
of bounded linear operators acting on a Banach space X such that for each t > 0
and each x ∈ X the maps s 7→ ||U(t, s)|| : [0, t] → R+, and s 7→ ||U(t, s)x|| are
measurable. The following statements are equivalent:

(i) The family U is uniformly exponentially stable.
(ii) (Uniform Barbashin’s Condition) There exists 1 ≤ p < ∞ such that

sup
t≥0

 t∫
s

||U(t, s)||pds


1
p

< ∞.

A Rolewicz’s variant of a similar uniform result for families on the entire real
line, can be found in [[3], Theorem 4.1].

It is naturally to ask what is the variant of the Strong Barbashin Condition
equivalent with the uniform exponential stability property of the evolution family
U? In this paper we shall give an answer to this question.

2. Notations and preliminary results

Let X be a real or complex Banach space and X∗ its dual space. By B(X) will
denote the Banach algebra of all linear and bounded operators acting on X. The
norms on X, X∗ and B(X) will be denoted by the symbol || · ||. Let R+ := [0,∞)
and J either of R or R+. By ∆J will denote the set of all pairs (t, s) ∈ J × J with
t ≥ s, and let ∆∗

J := ∆J \ {(t, t) : t ≥ 0}. By evolution family of bounded linear
operators acting on X will mean a family U = {U(t, s) : (t, s) ∈ ∆J} ⊂ B(X) which
verifies the following two conditions:

1. U(t, t) = I-the identity of B(X)- for all t ∈ J, and
2. U(t, s)U(s, r) = U(t, r) for all t, s, r ∈ J with t ≥ s ≥ r.
An evolution family is called strongly continuous if for each x ∈ X the maps

τ 7→ U(τ, s)x : [s, t] → X and s 7→ U(t, s)x : [s, t] → X

are continuous for any pair (t, s) ∈ ∆J . An evolution family is exponentially bounded
if there exist ω ∈ R and Mω ≥ 1 such that

||U(t, s)|| ≤ Mωeω(t−s) for all (t, s) ∈ ∆J . (2.1)
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If the evolution family U is exponentially bounded then we may choose a positive
ω such that (2.1) holds. An evolution family is uniformly exponentially stable if
there exists a negative ω such that the relation (2.1) is fulfilled.

Remark 1. There exist strongly continuous evolution families which is not expo-
nentially bounded. Indeed, let p : R → R the map defined by

p(t) =
{

m, if t ∈ [m2,m2 + 1)
0, in the rest

m being an integer number. Let us consider U(t, s) := exp(
t∫
s

p(τ)dτ) for (t, s) ∈ ∆J

and let X = R. It is clear that U(t, s) ∈ B(R) for all (t, s) ∈ ∆J and moreover,
the family U = {U(t, s)}t≥s is a strongly continuous evolution family which is
not exponentially bounded. In fact, if suppose that the family U is exponentially
bounded, then

U(m2 + 1,m2) = em ≤ Mωeω for all integer m,

which is a contradiction.

Remark 2. If an evolution family U satisfies the convolution condition

U(t, s) = U(t− s, 0) for all (t, s) ∈ ∆J (2)

then the one parameter evolution family T := {U(t, 0), t ≥ 0} is a semigroup of
operators on X. If T is strongly continuous then it has exponential growth. The
converse statement is not true such as the following example shows.

Example 1. Let X = R and T (t) : X → X defined by:

T (t)x =
{

0, if t > 0
x, if t = 0

where t ≥ 0 and x ∈ R. It is easily to check that |T (t)x| ≤ |x| for every t ≥ 0
and x ∈ X, so T (t) ∈ B(R) and the one parameter family T = {T (t) : t ≥ 0} is a
semigroup of operators on X = R. Moreover, for each x ∈ X, the map t 7→ T (t)x
is continuous on (0,∞), but for x 6= 0 the same map is not continuous at the point
t0 = 0. On the other hand for every t ≥ 0 we have that ||T (t)|| ≤ 1, thus the
semigroup T is exponentially bounded.

An one parameter semigroup T is called strongly measurable if for each x ∈ X
the map t 7→ T (t)x is Bochner measurable. See [5] for definitions of different
kinds of measurability for vector-valued functions. It is known that every strongly
continuous semigroup is also strongly continuous on (0,∞), but the measurability
property does not imply the continuity at the origin such the above example shows.
However, a certain type of measurability can be obtained for exponentially bounded
semigroups. Precisely, we have:

Proposition 1. If an one parameter semigroup {T (t)}t≥0 is exponentially bounded
then for each x ∈ X, the map t 7→ ||T (t)x|| is measurable.

Proof. Suppose that (2.1) holds. We endow the space X with an equivalent norm
given by

|||x||| := sup
t≥0

||e−ωtT (t)x||, x ∈ X.
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It is clear that the map x 7→ |||x||| is a norm on X and X endowed with this norm
becomes a Banach space. This follows by the inequalities:

||x|| ≤ |||x||| ≤ Mω||x|| x ∈ X.

Let S(t) := e−ωtT (t), t ≥ 0. For each positive h, we have:

|||S(t + h)x||| = sup
s≥0

||e−ωsT (s)e−ω(t+h)T (t + h)x||

= sup
r≥h

||e−ωrT (r)(S(t)x)||

≤ sup
r≥0

||e−ωrT (r)(S(t)x)|| = |||S(t)x|||.

The function t 7→ |||S(t)x||| is measurable because it is non-increasing, so the func-
tion t 7→ |||T (t)x||| = eωt|||S(t)x||| is also measurable. �

Let {T (t)}t≥0 be a strongly continuous one parameter semigroup on a Banach
space X and T∗ = {T (t)∗}t≥0 the associated one parameter dual semigroup on
X∗. It is known that the dual semigroup T∗ may be not strongly continuous but
it is exponentially bounded because ||T (t)|| = ||T (t)∗|| for all t ≥ 0. Then for each
x∗ ∈ X∗ the map t 7→ ||T (t)∗x∗|| is measurable. At this moment we do not know
if a similar result for evolution families holds. Throughout in as follows we shall
suppose that for each x ∈ X each x∗ ∈ X∗ and each (t, s) ∈ ∆J the maps

τ 7→ ||U(t, τ)∗x∗|| : [s, t] → R+ and r 7→ ||U(r, s)x|| : [s, t] → R+

are measurable.

3. Uniform Stability

Let p ∈ (1,∞) and q ∈ (1,∞) such that 1
p + 1

q = 1. We are in the position to
state the our first result on uniform stability of evolution families.

Theorem 1. Let U = {U(t, s) : (t, s) ∈ ∆J} be an evolution families which ver-
ifies the measurability conditions stated above. The following two conditions are
equivalent:

(i) The evolution family is uniformly stable, that is

sup
(t,s)∈∆J

||U(t, s)|| = MJ < ∞. (3.1)

(ii) There exist the positive constants Mp and M∗
q such that

sup
(t,s)∈∆∗

J

 1
t− s

t∫
s

||U(t, τ)∗x∗||qdτ


1
q

≤ M∗
q ||x∗||, ∀x∗ ∈ X∗ (3.2)

and

sup
(t,s)∈∆∗

J

 1
t− s

t∫
s

||U(τ, s)x||pdτ


1
p

≤ Mp||x||, ∀x ∈ X. (3.3)
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Proof. The implication (i) ⇒ (ii) is trivial having in mind that ||U(t, s)|| = ||U(t, s)∗||.
In this case can choose Mp = M∗

q = MJ . Now we are stating the proof of (ii) ⇒ (i).
Let x ∈ X, x∗ ∈ X∗ and (t, s) ∈ ∆∗

J . Using the Hölder inequality we get:

(t− s)|〈x∗, U(t, s)x〉| =
t∫

s

|〈x∗, U(t, τ)U(τ, s)x〉|dτ

≤

 1
t− s

t∫
s

|〈||U(t, τ)∗x∗||qdτ


1
q

·

 1
t− s

t∫
s

||U(τ, s)x||pdτ


1
p

(t− s)

≤ (t− s)MpM
∗
q ||x|| · ||x∗||.

Finally we get:

sup
(t,s)∈∆J

||U(t, s)|| = sup
||x||≤1,||x∗||≤1

|〈x∗, U(t, s)x〉| ≤ max{1,Mp,M
∗
q } := MJ < ∞,

that is (3.1) holds.
�

Corollary 1. Let T = {T (t)}t≥0 be an exponentially bounded one parameter semi-
group on a Banach space X. The following two statements are equivalent:

(i) The semigroup T is uniformly stable (or bounded), that is

sup
t≥0

||T (t)|| = M < ∞.

(ii) There exist p, q ∈ (1,∞) with 1
p + 1

q = 1 and the positive constants Mp and M∗
q

such that

sup
t>0

1
t

t∫
0

||T (τ)x||pdτ


1
q

≤ M ||x||, ∀x ∈ X (3.4)

and

sup
t>0

1
t

t∫
0

||T (τ)∗x∗||dτ


1
q

≤ M∗
q ||x∗||, ∀x∗ ∈ X∗. (3.5)

Proof. The measurability of the maps τ 7→ ||T (τ)x|| and τ 7→ ||T (τ)∗x∗|| relies
by the fact that the semigroup T is exponentially bounded as been stated in the
above Proposition 1. See also the comments after its proof. The inequalities (3.4)
and (3.5) can be easily obtained from (3.2) and respectively from (3.3) by making
changes of variables in integrals and using the convolution condition (2.2). �

Remark 3. The result from Corollary 1 in the particular case of strongly contin-
uous semigroups was announced earlier by Hans Zwart ([16]).

Let 1 ≤ p < ∞. A strongly continuous semigroup T = {T (t)}t≥0 on a Hilbert
space His called weakly-Lp-stable if

∞∫
0

|〈T (t)x, y〉|dt < ∞ for all x, y ∈ H.

It is already well-known that every strongly continuous semigroup is weakly-Lp-
stable if and only if it is uniformly exponentially stable. For details and proofs we
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refer to [11], [8], [15], [14]. See also the references therein. Having in mind the
result from the above Corollary 1 it is naturally to ask if a strongly continuous
semigroup on a Hilbert space H which verifies the condition:

sup
t>0

1
t

t∫
0

|〈T (τ)x, y〉|2dτ < ∞ for all x, y ∈ H,

is bounded. We do not give here an answer to this question.

Corollary 2. An exponentially bounded one parameter semigroup {T (t)} on a
Banach space X for which the map t 7→ ||T (t)|| is measurable, is uniformly bounded,
if and only if

sup
t>0

1
t

t∫
0

||T (τ)||2dτ < ∞.

Corollary 3. An one parameter group {G(t)}t∈R on a Banach space X for which
the map t 7→ ||G(t)|| is measurable, is uniformly bounded on R+, if and only if

sup
t>0

1
t

t∫
0

||G(τ)||2dτ < ∞.

Proof. The map t 7→ g(t) := ln(||G(t)||) : R → [−∞,∞) is measurable and sub-
additive, that is g(t + s) ≤ g(t) + g(s) for all t, s ∈ R. Thus it is superior locally
bounded. Then the restriction of G to R+ is locally bounded or equivalently the
semigroup G+ = {G(t) : t ≥ 0} is exponentially bounded. Then we can apply the
above Corollary 2 in order to finish the proof. �

Remark 4. The implication (ii) ⇒ (i) from Corollary 1 cannot be preserved if
either of the relations (3.4) or (3.5) is removed such that the following example
from [13] shows.

Example 2. Let X = L2(R and g : R → R+ the function given by g(s) =√
(1 + |s|). For each t ≥ 0 and each f ∈ X let us consider the bounded linear

operator T (t) defined by:

(T (t)f)(s) =
g(t + s)

g(s)
f(t + s), s ∈ R, t ≥ 0.

It is easily to check that the family T = {T (t)}t≥0 is a strongly continuous semigroup
of bounded linear operators on X and ||T (t)|| =

√
(1 + t), that is T is not uniformly

stable. However, the relation (3.4), with p = 2, is verified by T.

4. Uniform exponential stability

In order to prove the first result of this section we need a Lemma which reads
as follows:

Lemma 1. Let U = {U(t, s), (t, s) ∈ ∆J} be an exponentially bounded evolution
family of bounded linear operators on a Banach space X. If there exists a function
g : R+ → R+ such that

inf
t>0

g(t) < 1 and ||U(t, s)|| ≤ g(t− s), for all t ≥ s ∈ J,

then the family U is uniformly exponentially stable.
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For the proof of the above Lemma we refer to [[2], Lemma 4].

Theorem 2. Let U = {U(t, s) : (t, s) ∈ ∆J} be an exponentially bounded evolution
family on a Banach space X. The following statements are equivalent:

(i) The family U is uniformly exponentially stable.
(ii) There exist p, q ∈ (1,∞) with 1

p + 1
q = 1 and the positive constants Mp and

M∗
q such that

sup
t∈R

 t∫
−∞

||U(t, τ)∗x∗||qdτ


1
q

≤ M∗
q ||x∗||, ∀x∗ ∈ X∗ if J = R (4.1)

or

sup
t≥0

 t∫
0

||U(t, τ)∗x∗||qdτ


1
q

≤ M∗
q ||x∗||, ∀x∗ ∈ X∗ if J = R+ (4.2)

and

sup
(t,s)∈∆∗

J

 1
t− s

t∫
s

||U(τ, s)x||pdτ


1
p

≤ Mp||x||, ∀x ∈ X.

Proof. The implication (i) ⇒ (ii) is trivial. In order to prove the converse implica-
tion we remark first that if (4.1) holds then the inequality

sup
(t,s)∈∆∗

J

 1
t− s

t∫
s

||U(t, τ)∗x∗||qdτ


1
q

≤ M∗
q ||x∗||, ∀x∗ ∈ X∗ if J = R+

holds as well. Indeed if t− s ≥ 1 then 1
t− s

t∫
s

||U(t, τ)∗x∗||qdτ


1
q

≤

 t∫
s

||U(t, τ)∗x∗||qdτ


1
q

≤

 t∫
−∞ or 0

||U(t, τ)∗x∗||qdτ


1
q

≤ M∗
q ||x∗||, ∀x∗ ∈ X∗.

If 0 < t− s < 1 then we have: 1
t− s

t∫
s

||U(t, τ)∗x∗||q)dτ


1
q

≤

 1
t− s

t∫
s

Mq
ωeωq||x∗||qdτ


1
q

≤ Mωeω||x∗||

where ω was been considered positive. Thus as stated in the above Theorem 1, the
evolution family U is uniformly bounded, that is there exists a positive constant
N1 such that

||U(t, s)|| ≤ N1 for all (t, s) ∈ ∆J . (4.3)
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On the other hand for each (t, s) ∈ ∆∗
J we have:

(t− s)|〈x∗, U(t, s)x〉| =
t∫
s

|〈x∗, U(t, τ)U(τ, s)x〉|dτ

≤
(

t∫
s

||U(t, τ)∗x∗||qdτ

) 1
q
(

t∫
s

||U(τ, s)x||pdτ

) 1
p

≤
(

1
t−s

t∫
s

||U(τ, s)x||pdτ

) 1
p
(

t∫
s

||U(t, τ)∗x∗||qdτ

) 1
q

(t− s)
1
p

≤ Mp||x||(t− s)
1
p

(
t∫

−∞ or 0

||U(t, τ)∗x∗||qdτ

) 1
q

≤ MpM
∗
q ||x|| · ||x∗||(t− s)

1
p .

As a consequence there exists a positive constant N2 such that

(t− s)
1
q ||U(t, s)|| ≤ N2, ∀(t, s) ∈ ∆J . (4.4)

If add the inequalities (4.3) and (4.4) we get the following estimation for the norm
of U(t, s) :

||U(t, s)|| ≤ N1 + N2

1 + (t− s)
1
q

.

Then we can use the above Lemma 1 in order to finish the proof. �

Corollary 4. An uniformly bounded evolution family U = {U(t, s) : (t, s) ∈ ∆J}
is uniformly exponentially stable if and only if it verifies the conditions (4.2) (in
the case J = R+) or verifies the condition (4.1) (in the case J = R), from the
above Theorem 2.

The following theorem may be obtained by the duality principle.

Theorem 3. Let U = {U(t, s) : (t, s) ∈ ∆J} be an exponentially bounded evolution
family on a Banach space X. The following statements are equivalent:

(i) The family U is uniformly exponentially stable.
(ii) There exist p, q ∈ (1,∞) with 1

p + 1
q = 1 and the positive constants Mp and

M∗
q such that

sup
(t,s)∈∆J

 t∫
s

||U(τ, s)x||pdτ


1
p

≤ Mp||x||, ∀x ∈ X (4.5)

and

sup
(t,s)∈∆∗

J

 1
t− s

t∫
s

||U(t, τ)∗x∗||qdτ


1
q

≤ M∗
q ||x∗||, ∀x∗ ∈ X∗. (4.6)

It is clear that the relation (4.5) is equivalent with the Strong Datko Condition
(SDC) and then the condition (4.6) from the above Theorem 3 may be removed.

The following result shows that the uniform bounded-ness assumption from the
above Corollary 4 can be also replaced with a more generally one, namely with
the exponentially bounded-ness assumption. Precisely we can state the following
result:
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Theorem 4. Let U = {U(t, s), (t, s) ∈ ∆J} be an exponentially bounded evolution
family on a Banach space X which verifies the measurability conditions stated in the
end of the second section of our note. The following two statements are equivalent:

(i) The family U is uniformly exponentially stable.
(ii) There exist q ∈ [1,∞) and a positive constant M∗

q such that

sup
t∈R

 t∫
−∞

||U(t, τ)∗x∗||qdτ


1
q

≤ M∗
q ||x∗||, ∀x∗ ∈ X∗ if J = R

or

sup
t≥0

 t∫
0

||U(t, τ)∗x∗||qdτ


1
q

≤ M∗
q ||x∗||, ∀x∗ ∈ X∗ if J = R+.

Proof. Let s ∈ J be fixed. Then for t ≥ s + 1 we have that

1∫
0

M−q
ω e−ωqudu|〈x∗, U(t, s)x〉|q

≤

 t∫
s

||U(t, τ)∗x∗||q · ||U(t, s)||qM−q
ω e−ω(τ−s)qdτ

 ||x||q

≤

 t∫
s

||U(t, τ)∗x∗||qdτ

 · ||x||q ≤ (M∗
q )q||x∗||q||x||q

while that for s ≤ t < s+1 we get ||U(t, s|| ≤ Mωeω. Thus the family U is uniformly
bounded, and then can apply the above Corollary 4 in order to finish the proof in
the case q ∈ (1,∞). In the case q = 1 and J = R+ we have:

(t− s)|〈x∗, U(t, s)x〉| ≤ MR+

t∫
0

||U(t, τ)∗x∗||dτ ||x|| for all (t, s) ∈ ∆R+ .

Similar estimation can be easily established in the case J = R. Finally we apply
again the above Lemma 1 in order to finish the proof.

�
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