next up previous
Next: About this document ... Up: A geometric mean in Previous: A geometric mean in

Bibliography



1
 T.ANDO, On some operator inequalities, Math. Ann., 279(1987), 157-159.

2
 M.FUJII,  T.FURUTA AND  E.KAMEI, Furuta's inequality and application to Ando's theorem, Linear Alg. and Appl., 179(1993), 161-169.

3
 T. FURUTA, $A \ge B \ge 0$ assures $(B^rA^pB^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc., 101(1987), 85-88.

4
 T. FURUTA AND E. KAMEI, An extension of Uchiyama's result associated with an order preserving operator inequality, preprint.

5
 E. KAMEI, A satellite to Furuta's inequality, Math. Japon., 33(1988), 883-886.

6
 M. UCHIYAMA, An operator inequality related to Jensen's inequality, preprint.


Pui Ling Pang 2001-04-20