1. |
G. A. Anastassiou
Parametrized Trigonometric Derived Lp Degree
of Approximation by Various Smooth Singular Integral
Operators
|
2. |
G. A. Anastassiou
Parametrized Trigonometric Derived Uniform Approximation by
Various Smooth Singular Integral Operators
|
3. |
G. A. Anastassiou
New Opial and Polya Type Inequalities Over a Spherical Shell
|
4. |
M. E. Ozdemir
The New Upper Limits for H.-H. Integral Inequality
|
5. |
D. P. Wagh, Y. J. Bagul and N. Swami
Certain Refinements of Jordan-Type Inequalities
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S. S. Dragomir
Vector Inequalities in Terms of Spectral Radius of Operators
in Hilbert Spaces with Applications to Numerical Radius and
p-Schatten Norms
|
|
|
|
S. S. Dragomir
p-Schatten Norm Inequalities for Operators in Hilbert
Spaces Via a Kittaneh Result
|
|
S. S. Dragomir
Some New p-Schatten Norm Inequalities for Operators
in Hilbert Spaces Via a Kittaneh Result
|
|
|
|
|
|
S. S. Dragomir
Numerical Radius and p-Schatten Norm
Inequalities for Power Series of Operators in Hilbert Spaces
|
|
S. S. Dragomir
Several Numerical Radius and p-Schatten Norm
Inequalities for Power Series of Operators in Hilbert Spaces
|
|
|
|
|
|
S. S. Dragomir
Vector Inequalities for Analytic Functions of Operators in
Hilbert Spaces and Applications for Numerical Radius and p-Schatten
Norm
|
|
S. S. Dragomir
Numerical Radius and p-Schatten Norm
Inequalities for Analytic Functions of Operators in Hilbert
Spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|