1. |
S. S. Dragomir
Some Basic Results for the Φ-y-Normalized Determinant of
Positive Operators in Hilbert Spaces
|
2. |
S. S. Dragomir
Lower and Upper Bounds for the Φ-y-Normalized Determinant of
Positive Operators in Hilbert Spaces
|
3. |
G. A. Anastassiou
q-Deformed and λ-Parametrized Hyperbolic
Tangent Induced Banach Space Valued Ordinary and Fractional
Neural Network Approximations
|
4. |
G. A. Anastassiou
Abstract Voronovskaya Type Asymptotic Expansions for General
Sigmoid Functions Based Quasi-Interpolation Neural Network
Operators
|
5. |
G. A. Anastassiou
q-Deformed and λ-Parametrized A-generalized
Logistic Function Induced Banach Space Valued Multivariate
Multi Layer Neural Network
|
6. |
G. A. Anastassiou
q-Deformed and β-Parametrized Half
Hyperbolic Tangent Based Banach Space Valued Ordinary and
Fractional Neural Network Approximation
|
7. |
G. A. Anastassiou
q-Deformed and λ-Parametrized A-generalized
Logistic Function Based Banach Space Valued Ordinary and
Fractional Neural Network Approximations
|
8. |
S. S. Dragomir
Upper Bounds for the Extended Generalized Aluthge Transform
of Bounded Operators in Hilbert Spaces
|
9. |
S. S. Dragomir
Some Inequalities for the Extended Generalized Aluthge
Transform of Bounded Operators in Hilbert Spaces
|
10. |
G. A. Anastassiou
Parametrized Error Function Based Banach Space Valued
Univariate Neural Network Approximation
|
11. |
G. A. Anastassiou
Parametrized Error Function Based Banach Space Valued
Multivariate Multi Layer Neural Network Approximations
|
12. |
G. A. Anastassiou
Fuzzy Ordinary and Fractional General Sigmoid Function
Activated Neural Network Approximations
|
13. |
G. A. Anastassiou
Multivariate Fuzzy Approximation by Neural Network Operators
Activated by a General Sigmoid Function
|
14. |
G. A. Anastassiou
Multivariate Fuzzy-Random and Stochastic General Sigmoid
Activation Function Induced Neural Network Approximations
|
15. |
S. S. Dragomir
Some Inequalities for the Spectral Radius in Terms of the
Extended Generalized Aluthge Transform of Bounded Operators
in Hilbert Spaces
|
16. |
S. S. Dragomir
Inequalities for the (p,q)- Extended Generalized
Aluthge Transform of Bounded Operators in Hilbert Spaces
|
17. |
S. S. Dragomir
Upper Bounds for the Spectral Radius in Terms of the (p,q)-
Extended Generalized Aluthge Transform of Bounded Operators
in Hilbert Spaces
|
18. |
A. Ojo and P. O.
Olanipekun
Refinements of Generalized Hermite-Hadamard Inequality
|
19. |
G. A. Anastassiou
and D. Kouloumpou
Approximation of Multiple Time Separating Random Functions
by Neural Networks
|
20. |
S. S. Dragomir
Numerical Radius Inequalities for the Extended Generalized
Aluthge Transform of Bounded Operators in Hilbert Spaces
|
21. |
G. A. Anastassiou
Integral Inequalities Involving New Conformable Derivatives
|
22. |
G. A. Anastassiou
Towards Proportional Fractional Calculus and Inequalities
|
23. |
G. A. Anastassiou
q-Deformed and λ-Parametrized A-Generalized
Logistic Function Based Complex Valued Trigonometric and
Hyperbolic Neural Network High Order Approximations
|
24. |
G. A. Anastassiou
Trigonometric and Hyperbolic Poincaré, Sobolev and
Hilbert-Pachpatte Type Inequalities
|
25. |
S. S. Dragomir
A Generalization of Buzano's Inequality in Terms of Two
Operators in Hilbert Spaces
|
26. |
S. S. Dragomir
Power Inequalities for the Numerical Radius in Terms of
Generalized Aluthge Transform of Operators in Hilbert Spaces
|
27. |
S. S. Dragomir
General Inequalities for the Numerical Radius of Operators
in Hilbert Spaces
|
28. |
G. A. Anastassiou
Trigonometric and Hyperbolic Polya Type Inequalities
|
29. |
G. A.
Anastassiou
Trigonometric and Hyperbolic Korovkin Theory
 |
30. |
G. A. Anastassiou
and D. Kouloumpou
Brownian Motion Approximation by Parametrized and
Deformed Neural Networks
|
31. |
S. S. Dragomir
Power Inequalities for the Numerical Radius of Weighted Sums
of Operators in Hilbert Spaces
|
32. |
S. S. Dragomir
General Inequalities for the Numerical Radius of Weighted
Sums of Operators in Hilbert Spaces
|
33. |
G. A. Anastassiou
q-Deformed and λ -Parametrized Hyperbolic
Tangent Function Relied Complex Valued Trigonometric and
Hyperbolic Neural Network High Order Approximations
|
34. |
S. S. Dragomir
Spectral Radius Bounds for the Numerical Radius of Operators
in Hilbert Spaces
|
35. |
S. S. Dragomir
Schwarz Type Vector Inequalities in Terms of Spectral Radius
of Operators in Hilbert Spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|