1. |
S. S. Dragomir
Some Basic Results for the Φ-y-Normalized Determinant of
Positive Operators in Hilbert Spaces
|
2. |
S. S. Dragomir
Lower and Upper Bounds for the Φ-y-Normalized Determinant of
Positive Operators in Hilbert Spaces
|
3. |
G. A. Anastassiou
q-Deformed and λ-Parametrized Hyperbolic
Tangent Induced Banach Space Valued Ordinary and Fractional
Neural Network Approximations
|
4. |
G. A. Anastassiou
Abstract Voronovskaya Type Asymptotic Expansions for General
Sigmoid Functions Based Quasi-Interpolation Neural Network
Operators
|
5. |
G. A. Anastassiou
q-Deformed and λ-Parametrized A-generalized
Logistic Function Induced Banach Space Valued Multivariate
Multi Layer Neural Network
|
6. |
G. A. Anastassiou
q-Deformed and β-Parametrized Half
Hyperbolic Tangent Based Banach Space Valued Ordinary and
Fractional Neural Network Approximation
|
7. |
G. A. Anastassiou
q-Deformed and λ-Parametrized A-generalized
Logistic Function Based Banach Space Valued Ordinary and
Fractional Neural Network Approximations
|
8. |
S. S. Dragomir
Upper Bounds for the Extended Generalized Aluthge Transform
of Bounded Operators in Hilbert Spaces
|
9. |
S. S. Dragomir
Some Inequalities for the Extended Generalized Aluthge
Transform of Bounded Operators in Hilbert Spaces
|
10. |
G. A. Anastassiou
Parametrized Error Function Based Banach Space Valued
Univariate Neural Network Approximation
|
11. |
G. A. Anastassiou
Parametrized Error Function Based Banach Space Valued
Multivariate Multi Layer Neural Network Approximations
|
12. |
G. A. Anastassiou
Fuzzy Ordinary and Fractional General Sigmoid Function
Activated Neural Network Approximations
|
13. |
G. A. Anastassiou
Multivariate Fuzzy Approximation by Neural Network Operators
Activated by a General Sigmoid Function
|
14. |
G. A. Anastassiou
Multivariate Fuzzy-Random and Stochastic General Sigmoid
Activation Function Induced Neural Network Approximations
|
15. |
S. S. Dragomir
Some Inequalities for the Spectral Radius in Terms of the
Extended Generalized Aluthge Transform of Bounded Operators
in Hilbert Spaces
|
16. |
S. S. Dragomir
Inequalities for the (p,q)- Extended Generalized
Aluthge Transform of Bounded Operators in Hilbert Spaces
|
17. |
S. S. Dragomir
Upper Bounds for the Spectral Radius in Terms of the (p,q)-
Extended Generalized Aluthge Transform of Bounded Operators
in Hilbert Spaces
|
18. |
A. Ojo and P. O.
Olanipekun
Refinements of Generalized Hermite-Hadamard Inequality
|
19. |
G. A. Anastassiou
and D. Kouloumpou
Approximation of Multiple Time Separating Random Functions
by Neural Networks
|
20. |
S. S. Dragomir
Numerical Radius Inequalities for the Extended Generalized
Aluthge Transform of Bounded Operators in Hilbert Spaces
|
21. |
G. A. Anastassiou
Integral Inequalities Involving New Conformable Derivatives
|
22. |
G. A. Anastassiou
Towards Proportional Fractional Calculus and Inequalities
|
23. |
G. A. Anastassiou
q-Deformed and λ-Parametrized A-Generalized
Logistic Function Based Complex Valued Trigonometric and
Hyperbolic Neural Network High Order Approximations
|
24. |
G. A. Anastassiou
Trigonometric and Hyperbolic Poincaré, Sobolev and
Hilbert-Pachpatte Type Inequalities
|
25. |
S. S. Dragomir
A Generalization of Buzano's Inequality in Terms of Two
Operators in Hilbert Spaces
|
26. |
S. S. Dragomir
Power Inequalities for the Numerical Radius in Terms of
Generalized Aluthge Transform of Operators in Hilbert Spaces
|
27. |
S. S. Dragomir
General Inequalities for the Numerical Radius of Operators
in Hilbert Spaces
|
28. |
G. A. Anastassiou
Trigonometric and Hyperbolic Polya Type Inequalities
|
29. |
G. A.
Anastassiou
Trigonometric and Hyperbolic Korovkin Theory
|
30. |
G. A. Anastassiou
and D. Kouloumpou
Brownian Motion Approximation by Parametrized and
Deformed Neural Networks
|
31. |
S. S. Dragomir
Power Inequalities for the Numerical Radius of Weighted Sums
of Operators in Hilbert Spaces
|
32. |
S. S. Dragomir
General Inequalities for the Numerical Radius of Weighted
Sums of Operators in Hilbert Spaces
|
33. |
G. A. Anastassiou
q-Deformed and λ -Parametrized Hyperbolic
Tangent Function Relied Complex Valued Trigonometric and
Hyperbolic Neural Network High Order Approximations
|
34. |
S. S. Dragomir
Spectral Radius Bounds for the Numerical Radius of Operators
in Hilbert Spaces
|
35. |
S. S. Dragomir
Schwarz Type Vector Inequalities in Terms of Spectral Radius
of Operators in Hilbert Spaces
|
36. |
G. A. Anastassiou
q-Deformed and λ -Parametrized A
-generalized Logistic Function Based Complex Valued
Multivariate Trigonometric and Hyperbolic Neural Network
Approximations
|
37. |
G. A. Anastassiou
q-Deformed and λ -Parametrized Hyperbolic
Tangent Function Relied Complex Valued Multivariate
Trigonometric and Hyperbolic Neural Network Approximations
|
38. |
S. S. Dragomir
On Some Inequalities for Numerical Radius of Operator
Products in Hilbert Spaces
|
39. |
S. S. Dragomir
Vector Inequalities in Terms of Spectral Radius of Operators
in Hilbert Spaces with Applications to Numerical Radius and
p-Schatten Norms
|
40. |
G. A. Anastassiou
General Sigmoid Function Based Complex Valued Trigonometric
and Hyperbolic Neural Network High Order Approximations
|
41. |
S. S. Dragomir
p-Schatten Norm Inequalities for Operators in Hilbert
Spaces Via a Kittaneh Result
|
42. |
S. S. Dragomir
Some New p-Schatten Norm Inequalities for Operators
in Hilbert Spaces Via a Kittaneh Result
|
43. |
G. A. Anastassiou
General Multiple Sigmoid Functions Relied Complex Valued
Multivariate Trigonometric and Hyperbolic Neural
Network Approximations
|
44. |
G. A. Anastassiou
Updated Radial Ostrowski Inequalities Over a Ball
|
45. |
S. S. Dragomir
Numerical Radius and p-Schatten Norm
Inequalities for Power Series of Operators in Hilbert Spaces
|
46. |
S. S. Dragomir
Several Numerical Radius and p-Schatten Norm
Inequalities for Power Series of Operators in Hilbert Spaces
|
47. |
G. A. Anastassiou
Updated Ostrowski Inequalities Over a Spherical Shell
|
48. |
G. A. Anastassiou
and D. Kouloumpou
Approximation of Brownian Motion on Simple Graphs
|
49. |
S. S. Dragomir
Vector Inequalities for Analytic Functions of Operators in
Hilbert Spaces and Applications for Numerical Radius and p-Schatten
Norm
|
50. |
S. S. Dragomir
Numerical Radius and p-Schatten Norm
Inequalities for Analytic Functions of Operators in Hilbert
Spaces
|
51. |
M. O. Tijani, A.
Ojo and O. Akinsola
Some Refinement of Holder's and Its Reverse Inequality
|
52. |
S. S. Dragomir
Reverse Inequalities for Convex Functions with Applications
to Norms and Semi-Inner Products
|
53. |
S. S. Dragomir
Reverse Generalized Trapezoid Type Weighted Inequalities for
Convex Functions on Linear Spaces with Applications
|
54. |
G. A. Anastassiou
Trigonometric Generated Rate of Convergence of Smooth Picard
Singular Integral Operators
|
55. |
G. A. Anastassiou
Trigonometric Generated Lp Degree of
Approximation by Smooth Picard Singular Integral Operators
|
56. |
G. A. Anastassiou
Parametrized and Trigonometric Generated Quantitative
Convergence of Smooth Picard Singular Integral Operators
|
57. |
G. A. Anastassiou
Parametrized and Trigonometric Lp
Quantitative Convergence of Smooth Picard Singular Integral
Operators
|
58. |
G. A. Anastassiou
Uniform Approximation by Smooth Picard Multivariate Singular
Integral Operators Revisited
|
59. |
G. A. Anastassiou
Trigonometric Based Multivariate Smooth Picard Singular
Integrals Lp Approximation
|
60. |
G. A. Anastassiou
Trigonometric Induced Multivariate Smooth Gauss-Weierstrass
Singular Integrals Approximation
|
61. |
E. Gul, A. O.
Akdemir and A. Yalcin
On Minkowski Inequalities Involving Fractional Calculus With
General Analytic Kernels
|
62. |
G. A. Anastassiou
Trigonometric Background Multivariate Smooth Poisson-Cauchy
Singular Integrals Approximation
|
63. |
G. A. Anastassiou
Trigonometric Background Multivariate Smooth Trigonometric
Singular Integrals Approximations
|
64. |
G. A. Anastassiou
Trigonometric Derived Rate of Convergence of Various Smooth
Singular Integral Operators
|
65. |
G. A. Anastassiou
and D. Kouloumpou
Multivariate Fuzzy-Random and Perturbed Neural Network
Approximation
|
66. |
G. A. Anastassiou
Trigonometric Deduced Lp Degree of Approximation by
Various Smooth Singular Integral Operators
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|