1. |
S. S. Dragomir
Operator Identities for Functions Defined by Power Series with Applications for
Perspectives
|
2. |
S. S. Dragomir
Approximation of Integral Operators for Absolutely Continuous Functions Whose
Derivatives are Essentially Bounded
|
3. |
I. J. Taneja
Crazy, Selfie, Fibonacci, Triangular, Amicable Types Representations of Numbers
|
4. |
S. S. Dragomir
Some Weighted Inequalities for Riemann-Stieltjes Integral when a Function is
Bounded
|
5. |
I. J. Taneja
Different Digits Magic Squares and Number Patterns
|
6. |
I. J. Taneja
Natural Numbers in Terms of Fibonacci and S-gonal Values - I
|
7. |
I. J. Taneja
Natural Numbers in Terms of Fibonacci and S-gonal Values - II
|
8. |
M. S. S. Ali
On Hadamard's Inequality for Trigonometrically ρ-Convex
Functions
|
9. |
S. S. Dragomir
Some Inequalities of Hermite-Hadamard Type for Trigonometrically
ρ-Convex Functions
|
10. |
S. S. Dragomir
Some Inequalities of Fejer Type for Trigonometrically
ρ-Convex Functions
|
11. |
S. S. Dragomir
Some Inequalities of Ostrowski and Trapezoid Type for Trigonometrically
ρ-Convex Functions
|
12. |
S. S. Dragomir
Further Inequalities of Hermite-Hadamard Type for Trigonometrically
ρ-Convex Functions
|
13. |
S. S. Dragomir
Some Inequalities of Hermite-Hadamard Type for Hyperbolic
p-Convex Functions
|
14. |
S. S. Dragomir
Some Inequalities of Fejer Type for Hyperbolic
p-Convex Functions
|
15. |
S. S. Dragomir
Some Inequalities of Ostrowski and Trapezoid Type for Hyperbolic
p-Convex Functions
|
16. |
S. S. Dragomir
Some Inequalities of Jensen Type for Trigonometrically
ρ-Convex Functions
|
17. |
S. S. Dragomir
Some Inequalities of Jensen Type for Hyperbolic
p-Convex Functions
|
18. |
I. J. Taneja
Natural Numbers in Terms of S-gonal (Pentagonal and Hexagonal) Values
|
19. |
I. J. Taneja
Palindromic, Patterned Magic Sums, Composite, and Colored Patterns in Magic
Squares
|
20. |
M. Karagozlu and M. A. Ardic
New Integral Inequalities for r-Convex Function
|
21. |
M. Karagozlu and M. A. Ardic
Simpson Type Integral Inequalities for r-Convex Function
|
22. |
M. Karagozlu and M. A. Ardic
New Hermite-Hadamard Type Inequalities for r-Convex Functions
|
23. |
S. S. Dragomir
Some Inequalities of Ostrowski Type for Double Integral Mean of Absolutely
Continuous Functions
|
24. |
S. S. Dragomir
Some Inequalities of Trapezoid Type for Double Integral Mean of Absolutely
Continuous Functions
|
25. |
I. J. Taneja
Block-Wise Construction ofMagic and Bimagic Squares - II: Magic Squares of
Orders 39 to 45
|
26. |
I. J. Taneja
Multiplicative-Type Selfie Equalities
|
27. |
I. J. Taneja
Palindromic-Type Expressions and Patterns
|
28. |
S. S. Dragomir
Approximation of f-Divergence Measures by Using Two Points Taylor's Type
Representations with Integral Remainders
|
29. |
S. S. Dragomir
Further Inequalities for Trigonometrically
ρ-Convex Functions and Applications
|
30. |
S. S. Dragomir
Inequalities and Approximations for the Finite Hilbert Transform: a Survey of
Recent Results
|
31. |
S. S. Dragomir
New Approximation of f-Divergence Measures by Using Two Points Taylor's Type
Representations
|
32. |
S. S. Dragomir
Inequalities for the Finite Hilbert Transform of Convex Functions
|
33. |
S. S. Dragomir
Jensen's Type Inequalities for the Finite Hilbert Transform of Convex Functions
|
34. |
S. S. Dragomir
Inequalities for the Finite Hilbert Transform of Functions with Bounded Divided
Differences
|
35. |
S. S. Dragomir
Inequalities for the Finite Hilbert Transform of a Product of Two Functions
|
36. |
S. S. Dragomir
Generalized Finite Hilbert Transform and Some Basic Inequalities
|
37. |
S. S. Dragomir
Inequalities for a Generalized Finite Hilbert Transform of Convex Functions
|
38. |
S. S. Dragomir
Inequalities for a Generalized Finite Hilbert Transform of Differentiable
Functions with Convex Derivatives
|
39. |
S. S. Dragomir
Inequalities of Hermite-Hadamard Type for Composite Convex Functions
|
40. |
S. S. Dragomir
Inequalities of Hermite-Hadamard Type for Composite h-Convex Functions
|
41. |
S. S. Dragomir
Weighted Inequalities of Ostrowski Type for Functions of Bounded Variation and
Applications
|
42. |
S. S. Dragomir
Weighted Inequalities of Ostrowski Type for Absolutely Continuous Functions and
Applications
|
43. |
S. S. Dragomir
Weighted Inequalities of Trapezoid Type for Absolutely Continuous Functions and
Applications
|
44. |
S. S. Dragomir
Weighted Integral Inequalities of Ostrowski, Cebysev and Lupas Type with
Applications
|
45. |
S. S. Dragomir
Reverses of Jensen's Integral Inequality Via a Weighted Ostrowski Type Result
with Applications for Composite Convex Functions
|
46. |
S. S. Dragomir
Reverses of Jensen's Integral Inequality Via a Weighted Cebysev Type Result with
Applications for Composite Convex Functions
|
47. |
S. S. Dragomir
Reverses of Jensen's Integral Inequality Via a Weighted Lupas Type Result with
Applications for Composite Convex Functions
|
48. |
M. Akkouchi
Cauchy-Schwarz Inequality Implies Holder's Inequality
|
49. |
S. S. Dragomir
Some Iyengar Type Weighted Integral Inequalities
|
50. |
S. S. Dragomir
Weighted Inequalities of Trapezoid Type for Functions of Bounded Variation and
Applications
|
51. |
S. S. Dragomir
Reverses of Jensen's Integral Inequality Via a Weighted Ostrowski Result with
Applications for Continuous f-Divergence Measures
|
52. |
C.-P. Chen
Asymptotic Series Related to Ramanujan's Expansion for the Harmonic Number
|
53. |
S. S. Dragomir
Some Inequalities for the Cebysev Functional
|
54. |
S. S. Dragomir
Weighted Versions of Trapezoid and Midpoint Inequalities for Twice
Differentiable Functions and Applications
|
55. |
S. S. Dragomir
Weighted Inequalities of Ostrowski Type for Absolutely Continuous Functions in
Terms of p-Norms and Applications
|
56. |
S. S. Dragomir
New Inequalities for the Cebysev Functional
|
57. |
I. J. Taneja
Palindromic-Type Palindromes
|
58. |
I. J. Taneja
Palindromic-Type Non-Palindromes
|
59. |
S. S. Dragomir
Integral Inequalities Related to Wirtinger's Result
|
60. |
S. S. Dragomir
Some Integral Inequalities Related to Wirtinger's Result for p-Norms
|
61. |
S. S. Dragomir
Weighted Integral Inequalities Related to Wirtinger's Result for p-Norms with
Applications
|
62. |
I. J. Taneja
Palindromic-Type Squared Expressions with Palindromic and Non-Palindromic
Sums
|
63. |
S. S. Dragomir
Weighted Integral Inequalities Related to Opial's Result
|
64. |
S. S. Dragomir
Generalizations of Opial's Inequalities for Two Functions and Applications
|
65. |
S. S. Dragomir
p-Norms Generalizations of Opial's Inequalities for Two Functions and
Applications
|
66. |
S. S. Dragomir
Weighted Generalizations of Opial's Inequalities for Two Functions and
Applications
|
67. |
S. S. Dragomir
Weighted Generalizations of Opial's Inequalities for p-Norms and Two Functions
with Applications
|
68. |
S. S. Dragomir
Some Weighted Versions of Stekloff and Almansi Inequalities with Applications
|
69. |
S. S. Dragomir
Generalizations of Opial's Inequalities for Riemann-Stieltjes Integral with
Applications
|
70. |
S. S. Dragomir
Generalizations of Opial's Inequalities for Riemann-Stieltjes Integral, p-Norms
and Two Functions with Applications
|
71. |
K. Nantomah
Certain Properties of the Nielsen's β-Function
|
72. |
S. S. Dragomir
Simple Weighted Integral Inequalities Related to Hardy's Result
|
73. |
S. S. Dragomir
Some Weighted Integral Inequalities Related to Steffensen's Result
|
74. |
M. Karagozlu and M. A. Ardic
On the Hermite-Hadamard Type Inequalities for n-Times Differentiable r-Convex
Functions
|
75. |
I. J. Taneja
Same Digits Embedded Palprimes
|
76. |
I. J. Taneja
Palindromic-Type Pandigital Patterns in Pythagorean Triples
|
77. |
S. S. Dragomir
Some Integral Inequalities for Convex Functions
|
78. |
S. S. Dragomir
Some Integral Inequalities Related to Schwarz and Holder Inequalities
|
79. |
S. S. Dragomir
Some Weighted Ostrowski Type Inequalities for Riemann-Stieltjes Integral
|
80. |
S. S. Dragomir
Riemann-Stieltjes Integral Inequalities of Trapezoid Type with Applications
|
81. |
I. J. Taneja
Patterns in Pythagorean Triples Using Single Variable Procedures
|
82. |
I. J. Taneja
Patterns in Pythagorean Triples Using Double Variable Procedures
|
83. |
I. J. Taneja
Palindromic-Type Pandigital Patterns in Pythagorean Triples - I
|
84. |
I. J. Taneja
Multiple-Type Patterns in Pythagorean Triples
|
85. |
I. J. Taneja
Generating Pythagorean Triples with Applications to Magic Squares and
Palindromic-Type Pandigital Patterns
|
86. |
S. S. Dragomir
Some Jensen's Type Inequalities for Convex Functions and an Integral Operator
|
87. |
S. S. Dragomir
Riemann-Stieltjes Integral Inequalities of Modified Trapezoid Type
|
88. |
S. S. Dragomir
Bounds on a Generalized Cebysev Functional for the Riemann-Stieltjes Integral
|
89. |
K. Nantomah
On Some Properties and Inequalities of the Sigmoid Function
|
90. |
S. S. Dragomir
Some Mixed Mid-Point and Trapezoid Type Inequalities for Riemann-Stieltjes Integral
|
91. |
S. S. Dragomir
Bounds on a Mixed Cebysev Functional for the Riemann-Stieltjes Integral
|
92. |
I. J. Taneja
Palindromic-Type Pandigital Patterns in Pythagorean Triples - II
|
93. |
S. S. Dragomir
Some Riemann-Stieltjes Integral Inequalities for α-Trapezoid
Rule with Applications
|
94. |
S. S. Dragomir
On Some Riemann-Stieltjes Integral Inequalities of Generalized Trapezoid Type
with Applications
|
95. |
K. Nantomah
A Complete Monotonicity Property of a Function Involving the (p;q)-Digamma
Function
|
96. |
S. S. Dragomir
Ostrowski Type Riemann-Stieltjes Integral Inequalities for Convex Integrands and
Nondecreasing Integrators
|
97. |
S. S. Dragomir
Trapezoid Type Riemann-Stieltjes Integral Inequalities for Convex Integrands and
Nondecreasing Integrators
|
98. |
S. S. Dragomir
On Some Ostrowski Type Riemann-Stieltjes Integral Inequalities for Monotonic
Nondecreasing Integrands and Convex Integrators
|
99. |
S. S. Dragomir
New Trapezoid Type Riemann-Stieltjes Integral Inequalities for Monotonic
Integrands and Convex Integrators
|
100. |
S. S. Dragomir
Approximating The Riemann-Stieltjes Integral in Terms of Integral Means
|
101. |
I. J. Taneja
Generating Pythagorean Triples, Patterns, and Magic Squares
|
102 |
I. J. Taneja
Binomial Coefficients Type Selfie Numbers
|
103. |
S. S. Dragomir
Three Points Inequalities for Riemann-Stieltjes Integral with Integrands and
Integrators of Bounded Variation
|
104. |
S. S. Dragomir
New Three Points Inequalities for Riemann-Stieltjes Integral of Lipschitzian
Integrands and Integrators of Bounded Variation
|
105. |
E. J. Ionaşcu
Arithmetic Mean-Geometric Mean Inequality Under Additional Assumptions
|
106. |
S. S. Dragomir
General Three Points Inequalities for Weighted Riemann-Stieltjes Integral
|
107. |
G. A. Anastassiou
Conformable Fractional Inequalities
|
108. |
I. J. Taneja
Crazy Representations of Natural Numbers From 11112 to 20000
|
109. |
I. J. Taneja
Factorial-Type Selfie Numbers: Digit’s Order
|
110. |
L. Ciurdariu
Local Extreme Points and a Young-Type Inequality
|
111. |
I. J. Taneja
Different Aspects of Magics Square of Order 20
|
112. |
S. S. Dragomir
An Extension of Ostrowski's Inequality to the Complex Integral
|
113. |
S. S. Dragomir
An Extension of Trapezoid Inequality to the Complex Integral
|
114. |
S. S. Dragomir
Ostrowski's Type Inequalities for the Complex Integral on Paths
|
115. |
S. S. Dragomir
Trapezoid Type Inequalities for the Complex Integral on Paths
|
116. |
S. S. Dragomir
Ostrowski's Inequality for the Complex Integral of Holomorphic Functions on
Convex Domains
|
117. |
S. S. Dragomir
Generalized Trapezoid Inequality for the Complex Integral of Holomorphic
Functions on Convex Domains
|
118. |
S. F. Tahir, M. Mushtaq and M. Muddassar
Hermite-Hadamard Integral Inequality Via Delta-Integral
|
119. |
M. Muddassar, M. Iqbal and G. Haider
On the Fractional Integral Inequalities by the Way of Double Integrals
|
120. |
S. S. Dragomir
Gruss Type Inequalities for the Complex Integral on Paths
|
121. |
S. S. Dragomir
On Some
Gruss Type Inequalities for the Complex Integral
|
122. |
S. S. Dragomir
On Some Cebysev Type Inequalities for the Complex Integral
|
123. |
I. J. Taneja
Single Letter Representations of Natural Numbers from 1 to 11111
|
124. |
I. J. Taneja
Fraction-Type Single Letter Representations of Natural Numbers From 1 to 11111
|
125. |
S. S. Dragomir
Gruss Type Inequalities for the Complex Integral Via the Sonin Identity
|
126. |
S. S. Dragomir
A Refinement of Gruss Inequality for the Complex Integral
|
127. |
S. S. Dragomir
Some Weighted Inequalities for the Complex Integral (I)
|
128. |
S. S. Dragomir
Integral Inequalities of Hermite-Hadamard Type for L-Bounded Norm Weak Convex
Mappings
|
129. |
S. S. Dragomir
Some Weighted Inequalities for the Complex Integral (II)
|
130. |
S. S. Dragomir
Inequalities of Hermite-Hadamard Type for K-Bounded Modulus Convex Complex
Functions
|
131. |
I. J. Taneja
Crazy Representations of Natural Numbers From 20001 to 25000
|
132. |
I. J. Taneja
Crazy Representations of Natural Numbers From 25001 to 30000
|
133. |
M. Muddassar and Z. Elahi
New Integral Inequalities of the Type of Simpson's and Hermite-Hadamard's for
Twice Differentiable Quasi-Geometrically Convex Mappings
|
134. |
S. S. Dragomir
Inequalities of Jensen's Type for K-Bounded Modulus Convex Complex
Functions
|
135. |
S. S. Dragomir
Two Parameters Weighted Inequalities for the Complex Integral
|
136. |
S. S. Dragomir
Several Gruss Type Inequalities for the Complex Integral
|
137. |
Y. J. Bagul1 and S. K. Panchal
Certain Inequalities of Kober and Lazarevic Type
|
138. |
G. A. Anastassiou
Multidimensional Fractional Iyengar Type Inequalities for Radial Functions
|
139. |
I. J. Taneja
Single Digit Representations of Numbers From 1 to 2500
|
140. |
I. J. Taneja
Single Digit Representations of Numbers From 2501 to 5000
|
141. |
I. J. Taneja
Single Digit Representations of Numbers From 5001 to 7500
|
142. |
I. J. Taneja
Single Digit Representations of Numbers From 7501 to 10000
|
143. |
S. S. Dragomir
Two Points Taylor's Type Representations for Analytic Complex Functions with
Integral Remainders
|
144. |
G. A. Anastassiou
General Multidimensional Fractional Iyengar Type Inequalities
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|