1. |
S. S. Dragomir
Approximating the Integral of Analytic Complex Functions on
Paths From Convex Domains in Terms of Generalized Ostrowski
and Trapezoid Type
|
2. |
S. S. Dragomir
An Integral Representation of the Remainder in Taylor's
Expansion Formula for Analytic Function on General Domains
|
3. |
L. Ciurdariu
Some Extreme Points
|
4. |
S. S. Dragomir
Generalized Ostrowski and Trapezoid Type Rules for
Approximating the Integral of Analytic Complex Functions on
Paths from General Domains
|
5. |
S. S. Dragomir
New Trapezoid Type Rules for Approximating the Integral of
Analytic Complex Functions on Paths from General Domains
|
6. |
C.-P. Chen and
Q. Wang
Asymptotic Expansions and Continued Fraction Approximations
for the Harmonic Number
|
7. |
C.-P. Chen and
Q. Wang
Asymptotic Expansions and Continued Fraction Approximations
Related to the Constant e
|
8. |
S. S. Dragomir
An Extension of Wirtinger's Inequality to the Complex
Integral
|
9. |
S. S. Dragomir
An Extension of Opial's Inequality to the Complex Integral
|
10. |
S. S. Dragomir
Extensions of Stekloff and Almansi Inequalities to the
Complex Integral
|
11. |
S. S. Dragomir
An Identity of Fink Type for the Integral of Analytic
Complex Functions on Paths from General Domains
|
12. |
J. A. Adepoju
and A. A. Mogbademu
Effectiveness of Cannon and Composite Sets of Polynomials of
Two Complex Variables in Faber Regions
|
13. |
B. O.
Fagbemigun and A. A. Mogbademu
Some Classes of Convex Functions on Time Scales
|
14. |
S. S. Dragomir
Two Points Ostrowski Type Rules for Approximating the
Integral of Analytic Complex Functions on Paths From Convex
Domains (withdrawn by the author)
|
15. |
G. A.
Anastassiou
Complex Opial Type Inequalities
|
16. |
G. A.
Anastassiou
Complex Left Caputo Fractional Inequalities
|
17. |
G. A.
Anastassiou
Right Complex Caputo Fractional Inequalities
|
18. |
G. A.
Anastassiou
Mixed Complex Fractional Inequalities
|
19. |
S. S. Dragomir
Lipschitz Type Inequalities for Analytic Functions in Banach
Algebras
|
20. |
S. S. Dragomir
An Integral Representation of the Remainder in Taylor's
Expansion Formula for Analytic Functions in Banach Algebras
|
21. |
S. S. Dragomir
Norm Inequalities of Ostrowski Type for Analytic Functions
in Banach Algebras
|
22. |
S. S. Dragomir
Some Norm Integral Inequalities for Analytic Functions in
Banach Algebras
|
23. |
S. S. Dragomir
On Quadratic Norm Integral Inequalities for Analytic
Functions in Banach Algebras
|
24. |
G. A.
Anastassiou
Advanced Complex Fractional Ostrowski Inequalities
|
25. |
S. S. Dragomir
Two Points Norm Inequalities for Analytic Functions in
Banach Algebras
|
26. |
S. S. Dragomir
Norm Inequalities for the Error in Approximating Analytic
Functions in Banach Algebras by Complex Chords
|
27. |
G. A.
Anastassiou
Complex Korovkin Theory
|
28. |
S. S. Dragomir
Generalized Ostrowski Type Norm Inequalities for Analytic
Functions in Banach Algebras
|
29. |
S. S. Dragomir
Two Points and n-th Derivatives Norm Inequalities for
Analytic Functions in Banach Algebras
|
30. |
L. Ciurdariu
Several Applications for a Local Young-Type Inequality
|
31. |
S. S. Dragomir
Some Discrete Inequalities for Convex Functions Defined on
Linear Spaces
|
32. |
S. S. Dragomir
Some Integral Inequalities for Convex Functions on Linear
Spaces
|
33. |
S. S. Dragomir
Bounds for the HH f-Divergence Measures in Terms of
Chi-Square-Divergence
|
34. |
G. A.
Anastassiou
Complex Korovkin Theory Via Inequalities, a Quantitative
Approach
|
35. |
L. Ciurdariu
A Trace Inequality for Young-Type Inequality
|
36. |
S. S. Dragomir
Norm Inequalities for the Generalised Commutator in Banach
Algebras
|
37. |
S. S. Dragomir
Some Inequalities for Analytic Functions in Banach Algebras
|
38. |
S. S. Dragomir
Some Weighted Integral Inequalities for Convex Functions
|
39. |
S. S. Dragomir
Hermite-Hadamard Trapezoid and Mid-Point Divergences
|
40. |
S. S. Dragomir
Some f-Divergence Measures Related to Jensen's One
|
41. |
S. S. Dragomir
Some New f-Divergence Measures and Their Basic Properties
|
42. |
S. S. Dragomir
and S. G. From
Some Inequalities for an Integral Operator and n-Time
Differentiable Functions
|
43. |
S. S. Dragomir
Hermite-Hadamard Type Integral Inequalities for Perspective
Function
|
44. |
S. S. Dragomir
Hermite-Hadamard Type Integral Inequalities for Jensen's
Divergence
|
45. |
G. A.
Anastassiou
Complex Multivariate Taylor's Formula
|
46. |
S. S. Dragomir
Hermite-Hadamard Type Integral Inequalities for Double
Integral on General Domains
|
47. |
S. S. Dragomir
Ostrowski Type Integral Inequalities for Double Integral on
General Domains
|
48. |
S. S. Dragomir
Ostrowski Type Integral Inequalities for Double Integral of
Functions with Lipschitzian Partial Derivatives
|
49. |
S. S. Dragomir
Hermite-Hadamard Type Integral Inequalities for Multiple
Integrals on Convex Bodies
|
50. |
S. S. Dragomir
Ostrowski Type Integral Inequalities for Multiple Integral
on General Convex Bodies
|
51. |
L. Yin, J.-M.
Zhang and X.-L. Lin
Some New Approximations of Glaisher-Kinkelin Constant
|
52. |
S. S. Dragomir
Ostrowski Type Integral Inequalities for Multiple Integrals
of Functions with Lipschitzian Partial Derivatives on Convex
Bodies
|
53. |
S. S. Dragomir
Hermite-Hadamard Type Integral Inequalities on Paths
Surrounding General Convex Domain
|
54. |
S. S. Dragomir
Hermite-Hadamard Type Integral Inequalities for Double and
Path Integrals on General Domains Via Green's Identity
|
55. |
S. S. Dragomir
Some Inequalities for Double and Path Integrals on General
Domains Via Green's Identity
|
56. |
S. S. Dragomir
Ostrowski Type Inequalities for Double Integral on General
Domains Via Green's Identity
|
57. |
S. S. Dragomir
New Inequalities for Double and Path Integrals on General
Domains Via Green's Identity
|
58. |
S. S. Dragomir
Perturbed Ostrowski Type Inequalities for Double Integral on
General Domains
|
59. |
I. A. Baloch
Characterizations of Classes of Harmonic Convex Functions
and Applications
|
60. |
S. S. Dragomir
Some Triple Integral Inequalities for Functions Defined on
3-Dimensional Bodies Via Gauss-Ostrogradsky Identity
|
61. |
S. S. Dragomir
Some Hermite-Hadamard Type Inequalities for Convex Functions
Defined on Convex Bodies Via Gauss-Ostrogradsky Identity
|
62. |
S. S. Dragomir
Some Triple Integral Inequalities for Bounded Functions
Defined on 3-Dimensional Bodies
|
63. |
S. S. Dragomir
Ostrowski Type Triple Integral Inequalities for Functions
Defined on 3-Dimensional Bodies
|
64. |
S. S. Dragomir
Some Multiple Integral Inequalities Via the Divergence
Theorem
|
65. |
S. S. Dragomir
Some Hermite-Hadamard Type Integral Inequalities for Convex
Functions Defined on Convex Bodies in Rⁿ
|
66. |
S. S. Dragomir
Ostrowski Type Inequalities for Multiple Integrals Via
Divergence Theorem
|
67. |
S. S. Dragomir
Approximating the Volume Integral by a Surface Integral Via
the Divergence Theorem
|
68. |
S. S. Dragomir
Perturbed Ostrowski Type Inequalities for Multiple Integral
on General Domains
|
69. |
S. S. Dragomir
Inequalities for Double Integrals of Schur Convex Functions
on Symmetric and Convex Domains
|
70. |
S. S. Dragomir
On Some Inequalities for Double and Path Integrals on
General Domains
I |
71. |
S. S. Dragomir
Pre-Schur Convex Functions and Some Integral Inequalities on
Domains from Plane
|
72. |
S. S. Dragomir
Multiple Integral Inequalities for Schur Convex Functions on
Symmetric and Convex Bodies
|
73. |
S. S. Dragomir
Volume and Surface Integral Inequalities for Functions
Defined on Bodies from n-Dimensional Spaces
|
74. |
S. S. Dragomir
Integral Inequalities for Schur Convex Functions on
Symmetric and Convex Sets in Linear Spaces
|
75. |
S. S. Dragomir
Global Convexity of the Weighted Integral Mean of Functions
Defined on Convex Sets in Linear Spaces
|
76. |
S. S. Dragomir
Schur Convexity of Functions Associated to Fejér's
Inequality for Convex Functions in Linear Spaces
|
77. |
S. S. Dragomir
h-Convexity of the Weighted Integral Mean of Functions
Defined on Convex Sets in Linear Spaces
|
78. |
S. S. Dragomir
Schur Convexity of Integral Means
|
79. |
C.-P. Chen, H.
M. Srivastava and Q. Wang
A Method to Construct Continued-Fraction Approximations and
Its Applications
|
80. |
D. B. Pachpatte
On Some ψ Caputo
Fractional Ostrowski Like Inequalities
|
81. |
S. S. Dragomir
Some New Properties of Log-Convex Functions Defined on
Convex Subsets in Linear Spaces
|
82. |
S. S. Dragomir
Some New Properties of AH-Convex Functions Defined on Convex
Subsets in Linear Spaces
|
83. |
S. S. Dragomir
Some Hermite-Hadamard Type Inequalities Via Operator Convex
Functions of Two Variables
|
84. |
S. S. Dragomir
Operator Schur Convexity and Some Integral Inequalities
|
85. |
S. S. Dragomir
Operator Schur Convexity of Some Functions Associated to
Hermite-Hadamard Inequalities
|
86. |
S. S. Dragomir
Operator Schur Convexity of Integral Means
|
87. |
S. S. Dragomir
Reverses of Operator Hermite-Hadamard Inequalities
|
88. |
S. S. Dragomir
Reverses of Fejer's Inequalities for Convex Functions
|
89. |
S. S. Dragomir
Reverses and Refinements of Fejer's First Inequality for
Riemann-Stieltjes Integral of Convex Functions
|
90. |
S. S. Dragomir
Reverses and Refinements of Fejer's Second Inequality for
Riemann-Stieltjes Integral of Convex Functions
|
91. |
S. S. Dragomir
Reverses of Operator Fejer's Inequalities
|
92. |
S. S. Dragomir
Refinements and Reverses of Fejer's Inequalities for Convex
Functions on Linear Spaces
|
93. |
S. S. Dragomir
Comparing Weighted and Integral Means for Convex Functions
|
94. |
S. S. Dragomir
Some Inequalities for Weighted and Integral Means of Convex
Functions
|
95. |
S. S. Dragomir
Bounds for the Difference Between Weighted and Integral
Means of Convex Functions
|
96. |
S. S. Dragomir
Some Inequalities for Weighted and Integral Means of
Operator Convex Functions
|
97. |
S. S. Dragomir
Bounds for the Difference Between Weighted and Integral
Means of Operator Convex Functions
|
98. |
S. S. Dragomir
Some Inequalities for Weighted and Integral Means of Convex
Functions on Linear Spaces
|
99. |
S. S. Dragomir
Bounds for the Difference of Weighted and Integral Means of
Convex Functions on Linear Spaces
(withdrawn
by the author) |
100. |
D. B. Pachpatte
On some ψ Caputo Fractional
Cebysev Like Inequalities for Functions of Two and Three
Variables
|
101. |
B. O.
Fagbemigun and A. A. Mogbademu
Two-dimensional Hermite-Hadamard-Type Integral Inequalities
for Coordinated Φh-convex
Functions on Time Scales
|
102. |
B. O.
Fagbemigun, A. A. Mogbademu and J. O. Olaleru
Double Integral Inequalities of Hermite-Hadamard-type for Φh-convex Functions on
Linear Spaces
|
103. |
S. S. Dragomir
Midpoint and Trapezoid Inequalities for Differentiable
Functions of Selfadjoint Operators in Hilbert Spaces
|
104. |
S. S. Dragomir
Weighted Midpoint Inequalities for Differentiable Functions
of Selfadjoint Operators in Hilbert Spaces
|
105. |
S. S. Dragomir
Weighted Trapezoid Inequalities for Differentiable Functions
of Selfadjoint Operators in Hilbert Spaces
|
106. |
S. S. Dragomir
Some Inequalities for Weighted and Integral Means of
Operator Differentiable Functions
|
107. |
S. S. Dragomir
Norm Inequalities for the Difference Between Weighted and
Integral Means of Operator Differentiable Functions
|
108. |
L. Ciurdariu
and S. Lugojan
Several Applications of a Local Non-Convex Young-Type
Inequality
|
109. |
S. S. Dragomir
Reverse Operator Inequalities for Convex Functions in
Hilbert Spaces
|
110. |
S. S. Dragomir
On Some Reverse Operator Sum Inequalities for Convex
Functions in Hilbert Spaces
|
111. |
S. S. Dragomir
Operator Upper Bounds for Davis-Choi-Jensen's Difference in
Hilbert Spaces
|
112. |
S. S. Dragomir
Reverse Operator Inequalities for Davis Difference of
Convex Functions in Hilbert Spaces
|
113. |
S. S. Dragomir
Reverse Jensen Integral Inequalities for Convex Functions
and Positive Linear Maps in C*-Algebras
|
114. |
S. S. Dragomir
Reverse Jensen Integral Inequalities for Operator Convex
Functions in Terms of Fréchet
Derivative
|
115. |
S. S. Dragomir
Some Weighted Integral Inequalities for Sub/Superadditive
Functions on Linear Spaces
|
116. |
S. S. Dragomir
Some Weighted Integral Inequalities for Operator
Sub/Superadditive Functions on Hilbert Spaces
|
117. |
S. S. Dragomir
Bounds for the Difference of Weighted and Integral Means for
Convex Functions
|
118. |
S. S. Dragomir
Reverses and Refinements of First Fejer's Inequality for
Twice Differentiable Convex Functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|