1. |
S. S. Dragomir
Two Parameters and Two Points Representations for Functions
of Bounded Variation with Applications
|
2. |
M. A. Latif, S. S. Dragomir and E. Momoniat
Improved Hermite-Hadamard Type Inequalities by Using the p-Convexity
of Differentiable Mappings
|
3. |
I. J. Taneja
2017 - Mathematical Style
|
4. |
S. S. Dragomir
Trapezoid Type Inequalities for Isotonic Functionals with
Applications
|
5. |
S. S. Dragomir
Perturbed Trapezoid Type Inequalities for Isotonic
Functionals and Functions of Bounded Variation with
Applications
|
6. |
I. J. Taneja
Hardy-Ramanujan Number - 1729
|
7. |
S. S. Dragomir
Hermite-Hadamard Type Inequalities for Product of Convex and
Symmetrized Convex Functions
|
8. |
S. S. Dragomir
Hermite-Hadamard Type Inequalities for Product of
Symmetrized Convex Functions
|
9. |
S. S. Dragomir
Integral Inequalities for Asymmetrized Synchronous Functions
|
10. |
S. S. Dragomir
On Some
Integral Inequalities for Symmetrized Synchronous Functions
|
11. |
I. J. Taneja
Magic Squares with Perfect Square Number Sums
|
12. |
S. S. Dragomir
Inequalities for Symmetrized or Anti-Symmetrized Inner
Products of Complex-Valued Functions Defined on an Interval
|
13. |
S. S. Dragomir
Integral Gruss' Type Inequalities for Complex-Valued
Functions
|
14. |
E. Set, S. S. Dragomir and A. Gozpinar
Some Generalized Hermite-Hadamard Type Inequalities
Involving Fractional Integral Operator for Functions Whose
Second Derivatives in Absolute Value are s-Convex
|
15. |
I. J. Taneja
Same Digits Equality Expressions - I
|
16. |
I. J. Taneja
Same Digits Equality Expressions - II
|
17. |
I. J. Taneja
Patterns in Prime Numbers: Fixed Digits Repetitions
|
18. |
S. S. Dragomir
Some Bounds for the Complex Cebysev Functional of Functions
of Bounded Variation
|
19. |
S. S. Dragomir
Some Bounds for the Complex Cebysev Functional of Absolutely
Continuous Functions
|
20. |
S. S. Dragomir
Trace Inequalities of Jensen Type for Selfadjoint Operators
in Hilbert spaces: a Survey of Recent Results
|
21. |
I. J. Taneja
Magic Square Type Extended RowPalprimes of Orders 5x5 and
7x7
|
22. |
I. J. Taneja
Magic Square Type Symmetric and Embedded Palprimes of Order
9x9 - I
|
23. |
I. J. Taneja
Magic Square Type Symmetric and Embedded Palprimes of Order
9x9 - II
|
24. |
S. M. Sitnik
Norm Inequalities and Related Properties of Buschman-Erdelyi
Transmutations
|
25. |
I. J. Taneja
Selfie Numbers and Binomial Coefficients
|
26. |
S. S. Dragomir
Reverses of Jensen's Integral Inequality and Applications: a
Survey of Recent Results
|
27. |
S. S. Dragomir
An Averaging Integral Transform and its Properties
|
28. |
X. A. Udo-utun
On Almost Contraction Principle and Condition (XU)
|
29. |
X. A. Udo-utun
Mulitivalued Nonexpansive Mappings Characterized by a Fixed
Point Property
|
30. |
X. A. Udo-utun
On Almost Contraction Principle and Property (XU)
|
31. |
X. A. Udo-utun
On Retraction Problem Concerning Inclusion of F-contractions
in Almost Cntractions
|
32. |
X. A. Udo-utun and S. A. Sanniy
Application of a New Fixed Point Condition for Unification
of Studies of Fredholm-type Alternatives
|
33. |
I. J. Taneja
Running Expressions with Equalities: Increasing and
Decreasing Orders - I
|
34. |
I. J. Taneja
Running Expressions with Equalities: Increasing and
Decreasing Orders - II
|
35. |
I. J. Taneja
Fibonacci Sequence and Running Expressions with Equalities -
I
|
36. |
I. J. Taneja
Factorial-Power Selfie Expressions - I
|
37. |
I. J. Taneja
Semi-Selfie Numbers and Multiplicative Selfie Equalities
|
38. |
L. Yin and L.-G. Huang
A Survey for Generalized Trigonometric and Hyperbolic
Functions
|
39. |
S. S. Dragomir
Recent Developments of Discrete Inequalities for Convex
Functions Defined on Linear Spaces with Applications
|
40. |
S. S. Dragomir
Some Inequalities of Hermite-Hadamard Type for Convex
Functions and Riemann-Liouville Fractional Integrals
|
41. |
L. Ciurdariu
Some Hermite-Hadamard Type Inequalities
|
42. |
I. J. Taneja
Numbers from 1 to 1729 Written in Terms of 1729-1729
|
43. |
I. J. Taneja
S-gonal and Centered Polygonal Selfie Numbers, and
Connections with Binomials Coefficients
|
44. |
S. S. Dragomir
Further Inequalities of Hermite-Hadamard Type for Convex
Functions and Riemann-Liouville Fractional Integrals
|
45. |
L. Ciurdariu
Hermite-Hadamard Type Inequalities for Fractional Integrals
|
46. |
S. S. Dragomir
Some Inequalities of Hermite-Hadamard Type for Symmetrized
Convex Functions and Riemann-Liouville Fractional Integrals
|
47. |
L. Ciurdariu
Hermite-Hadamard Type Inequalities for Fractional Integrals
Operators
|
48. |
S. S. Dragomir
Ostrowski Type Inequalities for Riemann-Liouville Fractional
Integrals of Bounded Variation, Holder and Lipschitzian
Functions
|
49. |
S. S. Dragomir
Ostrowski Type Inequalities for Riemann-Liouville Fractional
Integrals of Absolutely Continuous Functions in Terms of 1-Norm
|
50. |
S. S. Dragomir
Ostrowski Type Inequalities for Riemann-Liouville Fractional
Integrals of Absolutely Continuous Functions in Terms of p-Norms
|
51. |
U. S. Kirmaci
On Some Hermite-Hadamard Type Inequalities for Twice
Differentiable (α,m)-Convex
Functions and Applications
|
52. |
S. S. Dragomir
Ostrowski and Trapezoid Type Inequalities for
Riemann-Liouville Fractional Integrals of Functions with
Bounded Variation
|
53. |
S. S. Dragomir
Ostrowski and Trapezoid Type Inequalities for
Riemann-Liouville Fractional Integrals of Absolutely
Continuous Functions with Bounded Derivatives
|
54. |
I. J. Taneja
Triangular Selfie Numbers - I
|
55. |
I. J. Taneja
Simultaneous Representations of Selfie Numbers in Terms of
Fibonacci and Triangular Numbers
|
56. |
S. S. Dragomir
Composite Ostrowski and Trapezoid Type Inequalities for
Riemann-Liouville Fractional Integrals of Functions with
Bounded Variation
|
57. |
M. Karagozlu and M. A. Ardic
On the Simpson Type Inequalities for s-Convex and
Convex Functions
|
58. |
S. S. Dragomir
Ostrowski Type Inequalities for Generalized
Riemann-Liouville Fractional Integrals of Functions with
Bounded Variation
|
59. |
G. Farid, S. Naqvi and A. U. Rehman
A Version of the Hadamard Inequality for Caputo Fractional
Derivatives and Related Results
|
60. |
G. Farid and S. Naqvi
Some Integral Inequalities for m-Convex Functions
Via Caputo Fractional Derivatives
|
61. |
S. S. Dragomir
Trapezoid Type Inequalities for Generalized
Riemann-Liouville Fractional Integrals of Functions with
Bounded Variation
|
62. |
S. Erden and M. Z. Sarikaya
Some Weighted Inequalities for Higher-Order Partial
Derivatives in Two Dimensions and Its Applications
(The preprint was withdrawn by the authors in 02/11/23)
|
63. |
S. Erden and M. Z. Sarikaya
Pompeiu Type Inequalities Using Conformable Fractional
Calculus and Its Applications
|
64. |
M. Z. Sarikaya, S. Erden and N. Celik
Weighted Inequalities Involving Conformable Integrals and
Its Applications for Random Variable and Numerical
Integration
Withdrawn by the authors |
65. |
G. A. Anastassiou
Principles of General Fractional Analysis for Banach Space
Valued Functions
|
66. |
G. A. Anastassiou and I. K. Argyros
Iterated Convergence on Banach Space Valued Functions of
Abstract g-Fractional Calculus
|
67. |
S. S. Dragomir
On Some Ostrowski Type Inequalities for Generalized
Riemann-Liouville Fractional Integrals
|
68. |
S. S. Dragomir
On Some Trapezoid Type Inequalities for Generalized
Riemann-Liouville Fractional Integrals
|
69. |
M. Matloka
Hermite-Hadamard Type Inequalities for Fractional Integrals
|
70. |
M. Matloka
Hermite-Hadamard-Fejér Type Inequalities for h-Preinvex
Functions Via Fractional Integrals
|
71. |
S. S. Dragomir
Ostrowski and Trapezoid Type Inequalities for Generalized
Riemann-Liouville Fractional Integrals of Absolutely
Continuous Functions with Bounded Derivatives
|
72. |
S. S. Dragomir
Ostrowski and Trapezoid Type Inequalities for Generalized
Riemann-Liouville Fractional Integrals of Absolutely
Continuous Functions in Terms of p-Norms of
Derivative
|
73. |
I. J. Taneja
Multiple Choice Patterns in Prime Numbers - I
|
74. |
I. J. Taneja
Multiple Choice Patterns in Prime Numbers - II
|
75. |
S. S. Dragomir
Ostrowski and Trapezoid Type Inequalities for Generalized
Riemann-Liouville Fractional Integrals of g-Lipschitzian
Functions
|
76. |
S. S. Dragomir
Hermite-Hadamard Type Inequalities of First Kind for
Generalized Riemann-Liouville Fractional Integrals
|
77. |
G. Farid and M. Usman
New Ostrowski Type Fractional Inequalities for h-Convex
Functions Via Caputo k-Fractional Derivative
|
78. |
G. Farid and A. Javed
Some Integral Inequalities for m-Convex Functions
Via Caputo k-Fractional Derivatives
|
79. |
S. S. Dragomir
Hermite-Hadamard Type Inequalities of Second Kind for
Generalized Riemann-Liouville Fractional Integrals
|
80. |
M. R. Delavar and S. S. Dragomir
Estimation Type Results Related to Fejer Inequality with
Applications
|
81. |
S. S. Dragomir
Hermite-Hadamard Type Inequalities for Generalized
Riemann-Liouville Fractional Integrals of h-Convex
Functions
|
82. |
S. S. Dragomir
On Some Equalities for Generalized Riemann-Liouville
Fractional Integrals of Absolutely Continuous Functions with
Applications
|
83. |
I. J. Taneja
Semi-Selfie Numbers - I
|
84. |
S. S. Dragomir
Further Ostrowski and Trapezoid Type Inequalities for the
Generalized Riemann-Liouville Fractional Integrals of
Functions with Bounded Variation
|
85. |
S. S. Dragomir and E. Kikianty
Chebyshev Type Inequalities by Means of Copulas
|
86. |
C.-P. Chen and N. Elezovic
Proofs of Certain Conjectures of Vuksic Concerning the
Inequalities for Means
|
87. |
C.-P. Chen
Inequalities Between Identric Mean and Convex Combinations
of Other Means
|
88. |
C.-P. Chen and J. Sandor
On Certain Conjectures for the Two Seiffert Means
|
89. |
S. S. Dragomir
On Some Ostrowski and Trapezoid Type Inequalities for the
Generalized Riemann-Liouville Fractional Integrals of
Absolutely Continuous Functions
|
90. |
G. Farid, U. N. Katugampola and M. Usman
Ostrowski Type Fractional Integral Inequalities for
s-Godunova-Levin Functions Via Katugampola Fractional
Integrals
|
91. |
S. Naqvi, G. Farid and A. U. Rehman
Fejer-Hadamard Type Inequalities for m-Convex Functions Via
Caputo Fractional Derivatives
|
92. |
G. Farid and M. Usman
Ostrowski Type Fractional Integral Inequalities for Mappings
Whose Derivatives are (α;m)-Convex
Via Katugampola Fractional Integrals
|
93. |
I. J. Taneja
Multiple Choice Patterns in Prime Numbers - III
|
94. |
I. J. Taneja
Multiple Choice Patterns in Prime Numbers - IV
|
95. |
I. J. Taneja
Patterns in Semi-Selfie Numbers
|
96. |
I. J. Taneja
Factorial-Power Selfie Expressions - II
|
97. |
S. S. Dragomir
An Operator Associated to Hermite-Hadamard Inequality for
Convex Functions
|
98. |
A. R. Kashif, T. S. Khan, M. Shoaib and A. Qayyum
A Comparison and Error Analysis of Error Bounds
|
99. |
S. S. Dragomir
Some Inequalities of Hermite-Hadamard Type for Convex
Functions
|
100. |
S. S. Dragomir
One Parameter Bounds for an Operator Associated to
Hermite-Hadamard Inequality for Convex Functions
|
101. |
M. Kunt, D. Karapinar, S. Turhan and I. Iscan
The Left Rieaman-Liouville Fractional Hermite-Hadamard Type
Inequalities for Convex Functions
|
102. |
M. Kunt, D. Karapinar, S. Turhan and I. Iscan
The Right Rieaman-Liouville Fractional Hermite-Hadamard Type
Inequalities for Convex Functions
|
103. |
S. S. Dragomir
Some Inequalities for an Operator Associated to
Hermite-Hadamard Inequality for Functions of Bounded
Variation
|
104. |
M. Kunt, I. Iscan, S. Turhan and D. Karapinar
Improvement of Fractional Hermite-Hadamard Type Inequality
and Some New Fractional Midpoint Type Inequalities for
Convex Functions
|
105. |
S. Turhan, I. Iscan and M. Kunt
The Right Conformable Fractional Hermite-Hadamard Type
Inequalities for Convex Functions
|
106. |
S. Turhan, I. Iscan and M. Kunt
The Left Conformable Fractional Hermite-Hadamard Type
Inequalities for Convex Functions
|
107. |
S. S. Dragomir
Some Ostrowski Type Inequalities for an Integral Operator
and
n-Time Differentiable Functions
|
108. |
S. S. Dragomir
Some Families of Operators Associated to Hermite-Hadamard
Inequality for Convex Functions
|
109. |
P. O. Olanipekun, A. A. Mogbademu and S. S.
Dragomir
Hermite-Hadamard Type Inequalities for a Class of
Harmonically Convex Functions
|
110. |
J. E. Restrepo, V. L. Chinchane and P. Agarwal
Weighted Reverse Fractional Inequalities of Minkowski's and
Holder's Type with Applications
|
111. |
S. S. Dragomir
Ostrowski and Trapezoid Type Inequalities for the
Generalized k-g-Fractional Integrals of Functions
with Bounded Variation
|
112. |
G. Farid and G. Abbas
A Generalized Fejer-Hadamard Inequality for Harmonically
Convex Functions Via Generalized Fractional Integral
Operator and Related Results
|
113. |
S. Naqvi, G. Farid and B. Tariq
Caputo Fractional Integral Inequalities Via m-Convex
Functions
|
114. |
I. J. Taneja
Factorial-Type Selfie Expressions With Fibonacci and
Triangular Values
|
115. |
S. S. Dragomir
Trapezoid Type Inequalities for the Generalized k-g-Fractional
Integrals of Absolutely Continuous Functions
|
116. |
I. J. Taneja
Semi-Selfie Numbers - II
|
117. |
S. S. Dragomir
Ostrowski Type Inequalities for the Generalized k-g-Fractional
Integrals of Absolutely Continuous Functions
|
118. |
L. Ciurdariu
New Hermite-Hadamard Type Inequalities Using the
Riemann-Liouville Fractional Integral
|
119. |
S. S. Dragomir
Some Inequalities for the Generalized k-g-Fractional
Integrals of Functions Under Complex Boundedness Conditions
|
120. |
I. J. Taneja
Mathematical Aspects of July - 2017
|
121. |
I. J. Taneja
Embedded Palindromic Prime Numbers - I
|
122. |
I. J. Taneja
Fibonacci-Triangular-Type Selfie Expressions - I
|
123. |
I. J. Taneja
Fibonacci-Triangular-Type Selfie Expressions - II
|
124. |
I. J. Taneja
Palindromic Prime Embedded Trees
|
125. |
S. S. Dragomir
Further Inequalities for the Generalized k-g-Fractional
Integrals of Functions with Bounded Variation
|
126. |
S. S. Dragomir
Some Inequalities for the Generalized k-g-Fractional
Integrals of Convex Functions
|
127. |
S. S. Dragomir
Inequalities for the Generalized k-g-Fractional
Integrals in Terms of Double Integral Means
|
128. |
I. J. Taneja
Pythagorean Triples and Perfect Square Sum Magic Squares
|
129. |
L. Ciurdariu
A Trace Inequality as an Analogue of a Refinement of Young's
Inequality
|
130. |
D.-Y. Hwang and S. S. Dragomir
Some Weighted Hermite-Hadamard Inequality for r-Preinvex
Functions on an Invex Set
|
131. |
S. S. Dragomir
Inequalities of Jensen's Type for Generalized k-g-Fractional
Integrals
|
132. |
K. Nantomah
Monotonicity and Convexity Properties and Some Inequalities
Involving a Generalized Form of the Wallis' Cosine Formula
|
133. |
S. S. Dragomir
Inequalities of Jensen's Type for Generalized k-g-Fractional
Integrals of Function f for Which the
Composite f◦g^{-1}
is Convex
|
134. |
K. Nantomah
Some Properties and Inequalities for Derivatives of the
Generalized Wallis' Cosine Formula
|
135. |
S. S. Dragomir
Improving Schwarz Inequality in Inner Product Spaces
|
136. |
I. J. Taneja
Perfect Square Sum Magic Squares
|
137. |
W. J. Zeng, M. Feckan and J. R. Eang
Hermite-Hadamard Inequality Involving Conformable Fractional
Integrals for Twice Differential Convex Functions
|
138. |
I. J. Taneja
Concatenation-Type Selfie Numbers With Factorial and
Square-Root
|
139. |
S. S. Dragomir
Operator Refinements of Schwarz Inequality in Inner Product
Spaces
|
140. |
I. J. Taneja
Digit’s Order Selfie Numbers: Factorial and Square-Root
|
141. |
I. J. Taneja
Digit’s Order Selfie Numbers: Fibonacci and Triangular
Values
|
142. |
S. S. Dragomir
Some Generalizations of Schwarz Inequality in Inner Product
Spaces
|
143. |
S. S. Dragomir and M. Elmursi
Some Results Related to Bessel's Inequality in Inner Product
Spaces
|
144. |
S. S. Dragomir
Refinements of Schwarz Inequality in Inner Product Spaces
with Applications to Integrals
|
145. |
S. S. Dragomir and N. Minculete
On Several Inequalities in an Inner Product Space
|
146. |
S. G. From and S. S. Dragomir
Some New Refinements of Jensen’s Discrete Inequality
|
147. |
I. J. Taneja
Flexible Powers Narcissistic-Type Numbers
|
148. |
I. J. Taneja
Fixed and Flexible Powers Narcissistic Numbers with Division
|
149. |
I. J. Taneja
Single Letter Fraction-Type Representations of Natural
Numbers - I
|
150. |
I. J. Taneja
Block-Wise Equal Sums Pan Magic Squares of Order 4k
|
151. |
S. S. Dragomir
Some Additive Inequalities Related to Bessel's Result
|
152. |
C.-P. Chen and R. B. Paris
Series Representation of the Remainders in the Expansions
for Certain Trigonometric Functions and Some Related
Inequalities, II
|
153. |
S. S. Dragomir
Hypo-q-Norms on a Cartesian Product of Normed Linear Spaces
|
154. |
I. J. Taneja
Block-Wise Equal Sums Magic Squares of Order 3k
|
155. |
I. J. Taneja
Block-Wise Unequal Sums Magic Squares
|
156. |
I. J. Taneja
Amicable Numbers With Patterns in Products and Powers
|
157. |
S. S. Dragomir
Some Inequalities for Semi-Inner Products on Complex Banach
Spaces
|
158. |
G. Farid, M. Marwan and A. U. Rehman
On Mappings in Connection to the Fejer-Hadamard Inequality
for Coordinated Convex Functions
|
159. |
I. J. Taneja
Magic Rectangles in Construction of Block-Wise Pan Magic
Squares
|
160. |
S. Wu, B. R. Ali, I. A. Baloch and A. U. Haq
Inequalities Related to Symmetrized Harmonic Convex
Functions
|
161. |
S. S. Dragomir
Some Functionals Associated to Semi-Inner Products on
Complex Banach Spaces
|
162. |
I. J. Taneja
Magic Crosses: Repeated and Non Repeated Entries
|
163. |
I. J. Taneja
Block-Wise Equal Sums Magic Squares of Orders 6k
|
164. |
M. R. Delavar and S. S. Dragomir
Two Mappings in Connection to Fejer Inequality with
Applications
|
165. |
H. Jafarmanesh, T. L. Shateri and S. S. Dragomir
Choi-Davis-Jensen's Type Trace Inequalities for Convex
Functions of Self-adjoint Operators in Hilbert Spaces
|
166. |
I. J. Taneja
Representations of Letters and Numbers with Equal Sums Magic
Squares of Order 4
|
167. |
I. J. Taneja
Representations of Letters and Numbers with Equal Sums Magic
Squares of Order 6
|
168. |
S. S. Dragomir
Inequalities for Hypo-q-Norms on a Cartesian Product
of Inner Product Spaces
|
169. |
S. S. Dragomir
Hypo-q-Norms on Cartesian Product of Algebras of
Bounded Linear Operators on Hilbert Spaces
|
170. |
S. S. Dragomir
Hypo-q-Norms on Cartesian Product of Algebras of
Bounded Linear Operators on Banach Spaces
|
171. |
I. J. Taneja
Block-Wise Magic and Bimagic Squares
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|