1. |
S. S. Dragomir
Some Determinant Power Inequalities for Positive Definite
Matrices Via Jensen's Inequality for Exponential Functions
|
2. |
N. Faried, M. S.
S. Ali and Z. M. Yehia
On Certain Properties of Sub E-functions
|
3. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Tominaga and Furuichi
Results
|
4. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Some Inequalities in Terms
of Kantorovich Ratio
|
5. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Refinements and Reverses of
Young's Result
|
6. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Jensen and Slater's Results
|
7. |
S. S. Dragomir
New Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Jensen and Slater's Results
|
8. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via One Variable Log
Inequalities
|
9. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Ostrowski Type Results
|
10. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Two Variables Log
Inequalities
|
11. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Two Positive
Operators in Hilbert Spaces
|
12. |
S. S. Dragomir
Reverses of Some Inequalities for the Normalized
Determinants of Sequences of Positive Operators in Hilbert
Spaces
|
13. |
S. S. Dragomir
Refinements and Reverses of Some Inequalities for the
Normalized Determinants of Sequences of Positive Operators
in Hilbert Spaces
|
14. |
G. A. Anastassiou
Algebraic Function Based Banach Space Valued Ordinary and
Fractional Neural Network Approximations
|
15. |
G. A. Anastassiou
Gudermannian Function Activated Banach Space Valued Ordinary
and Fractional Neural Network Approximations
|
16. |
S. S. Dragomir
Some Properties of Trace Class P-Determinant of
Positive Operators in Hilbert Spaces
|
17. |
S. S. Dragomir
Upper and Lower Bounds for Trace Class P-Determinant
of Positive Operators in Hilbert Spaces
|
18. |
S. S. Dragomir
Upper and Lower Bounds for Trace Class P-Determinant
of Positive Operators in Hilbert Spaces Via Kantorovich's
Constant
|
19. |
S. S. Dragomir
On Some Upper and Lower Bounds for Trace Class P-Determinant
of Positive Operators in Hilbert Spaces
|
20. |
S. S. Dragomir
Some Bounds for Trace Class P-Determinant of
Positive Operators in Hilbert Spaces Via Tominaga's Results
|
21. |
S. S. Dragomir
Inequalities for Trace Class P-Determinant of
Positive Operators in Hilbert Spaces Via Ostrowski Type
Results
|
22. |
S. S. Dragomir
Several Bounds for the Trace Class P-Determinant of
Positive Operators in Hilbert Spaces
|
23. |
S. S. Dragomir
Bounds for the Trace Class P-Determinant of Positive
Operators in Hilbert Spaces Via Jensen's Type Inequalities
for Twice Differentiable Functions
|
24. |
S. S. Dragomir
Some Functional Properties for the Normalized Determinant of
Sequences of Positive Operators in Hilbert Spaces
|
25. |
S. S. Dragomir
Some New Inequalities for the Trace Class P-Determinant
of Positive Operators in Hilbert Spaces
|
26. |
S. S. Dragomir
Some Functional Properties for the Trace Class P-Determinant
of Sequences of Positive Operators in Hilbert Spaces
|
27. |
G. A. Anastassiou
Generalized Symmetrical Sigmoid Function Activated Banach
Space Valued Ordinary and Fractional Neural Network
Approximation
|
28. |
S. S. Dragomir
Some Improvements of the Monotonicity Property for the
Normalized Determinant of Positive Operators in
Hilbert Spaces
|
29. |
S. S. Dragomir
The Sub-multiplicative Property for the Normalized
Determinant of Positive Operators in Hilbert Spaces
|
30. |
S. S. Dragomir
Some Improvements of the Monotonicity Property for the Trace
Class P-Determinant of Positive Operators in Hilbert
Spaces
|
31. |
S. S. Dragomir
A Sub-Multiplicative Property for the Trace Class P-Determinant
of Positive Operators in Hilbert Spaces
|
32. |
G. A. Anastassiou
General Multivariate Arctangent Function Activated Neural
Network Approximations
|
33. |
G. A. Anastassiou
Abstract Multivariate Algebraic Function Activated Neural
Network Approximations
|
34. |
G. A. Anastassiou
Abstract Multivariate Gudermannian Function Activated Neural
Network Approximations
|
35. |
G. A. Anastassiou
Generalized Symmetrical Sigmoid Function Activated
Neural Network Multivariate Approximation
|
36. |
S. S. Dragomir
Some Basic Results for the Normalized Entropic Determinant
of Positive Operators in Hilbert Spaces
|
37. |
S. S. Dragomir
Upper and Lower Bounds for the Normalized Entropic
Determinant of Positive Operators in Hilbert Spaces
|
38. |
S. S. Dragomir
Inequalities for the Normalized Entropic Determinant of
Positive Operators in Hilbert Spaces Via Kantorovich
Constant
|
39. |
S. S. Dragomir
Various Bounds for the Normalized Entropic Determinant of
Positive Operators in Hilbert Spaces
|
40. |
S. S. Dragomir
Some Reverse Inequalities for the Normalized Entropic
Determinant of Positive Operators in Hilbert Spaces
|
41. |
S. S. Dragomir
Functional Properties for the Normalized Entropic
Determinant of Sequences of Positive Operators in Hilbert
Spaces
|
42. |
S. S. Dragomir
Inequalities for the Normalized Entropic Determinant of
Positive Operators in Hilbert Spaces
|
43. |
S. S. Dragomir
Refinements and Reverses of Some Inequalities for the
Normalized Entropic Determinant of Positive Operators in
Hilbert Spaces
|
44. |
S. S. Dragomir
A Sub-Multiplicative Property for the Normalized Entropic
Determinant of Sequences of Positive Operators in Hilbert
Spaces
|
45. |
G. A. Anastassiou
Degree of Approximation by Kantorovich-Choquet
Quasi-interpolation Neural Network Operators Revisited
|
46. |
G. A. Anastassiou
Degree of Approximation by Kantorovich-Shilkret
Quasi-interpolation Neural Network Operators Revisited
|
47. |
G. A. Anastassiou
Vector Voronsovkaya Type Asymptotic Expansions for Sigmoid
Functions Induced Quasi-interpolation Neural Network
Operators Revisited
|
48. |
G. A. Anastassiou
Fuzzy Fractional More Sigmoid Function Activated Neural
Network Approximations Revisited
|
49. |
S. S. Dragomir
Some Properties of Trace Class Entropic P-Determinant
of Positive Operators in Hilbert Spaces
|
50. |
S. S. Dragomir
Some Inequalities for Trace Class Entropic P-Determinant
of Positive Operators in Hilbert Spaces
|
51. |
S. S. Dragomir
Bounds for the Entropic Trace Class P-Determinant
of Positive Operators in Hilbert Spaces Via Kantorovich's
Constant
|
52. |
S. S. Dragomir
Inequalities for Trace Class Entropic P-Determinant
of Positive Operators in Hilbert Spaces Via Čebyšev's Type
Results
|
53. |
S. S. Dragomir
Bounds for the Geometric Mean of Trace Class
Entropic P-Determinants of Positive Operators in
Hilbert Spaces
|
54. |
S. S. Dragomir
Several Bounds for the Entropic Trace Class P-Determinant
of Positive Operators in Hilbert Spaces Via Jensen's Type
Inequalities for Twice Differentiable Functions
|
55. |
S. S. Dragomir
Functional Properties for the Entropic Trace Class P-Determinant
of Sequences of Positive Operators in Hilbert Spaces
|
56. |
S. S. Dragomir
A Sub-multiplicative Property for the Entropic Trace
Class P-Determinant of Sequences of Positive
Operators in Hilbert Spaces
|
57. |
G. A. Anastassiou
Multivariate Fuzzy-Random and Stochastic Arctangent,
Algebraic, Gudermannian and Generalized Symmetric Activation
Functions Induced Neural Network Approximations
|
58. |
S. S. Dragomir
Basic Properties of Relative Entropic Normalized Determinant
of Positive Operators in Hilbert Spaces
|
59. |
S. S. Dragomir
Some Bounds for the Relative Entropic Normalized Determinant
of Positive Operators in Hilbert Spaces
|
60. |
S. S. Dragomir
Bounds for the Relative Entropic Normalized Determinant of
Positive Operators in Hilbert Spaces Via Kantorovich
Constant
|
61. |
S. S. Dragomir
Some Bounds for the Relative Entropic Normalized Determinant
of Positive Operators in Hilbert Spaces
|
62. |
S. S. Dragomir
Some Bounds for the Relative Entropic Normalized Determinant
of Positive Operators in Hilbert Spaces Via Ostrowski Type
Inequalities
|
63. |
S. S. Dragomir
Quasi Monotonicity for the Relative Entropic Normalized
Determinant of Positive Operators in Hilbert Spaces
|
64. |
S. S. Dragomir
A Sub-multiplicative Property for the Relative Entropic
Normalized Determinant of Positive Operators in Hilbert
Spaces
|
65. |
S. S. Dragomir
Basic Properties of Relative Entropic Normalized P-Determinant
of Positive Operators in Hilbert Spaces
|
66. |
S. S. Dragomir
Some Inequalities Relative Entropic Normalized P-Determinant
of Positive Operators in Hilbert Spaces
|
67. |
S. S. Dragomir
Upper and Lower Bounds for Relative Entropic Normalized P-Determinant
of Positive Operators in Hilbert Spaces in Terms of
Kantorovich Constant
|
68. |
S. S. Dragomir
Some Bounds for Relative Entropic Normalized P-Determinant
of Positive Operators in Hilbert Spaces Via Ostrowski's
Inequality
|
69. |
S. S. Dragomir
Several Product Inequalities for Relative Entropic
Normalized P-Determinant of Positive Operators in
Hilbert Spaces Via Ostrowski's Inequality
|
70. |
S. S. Dragomir
Reverse Inequalities Relative Entropic Normalized P-Determinant
of Positive Operators in Hilbert Spaces
|
71. |
S. S. Dragomir
Some Improvements of the Monotonicity Property for Relative
Entropic Normalized P-Determinant of Positive
Operators in Hilbert Spaces
|
72. |
S. S. Dragomir
On the Sub-Multiplicative Property for the Relative Entropic
Normalized P-Determinant of Positive Operators in
Hilbert Spaces
|
73. |
L. Ciurdariu
Some Hermite-Hadamard Type Inequalities for s-Convex
Functions
|
74. |
S. S. Dragomir
Tensorial and Hadamard Product Inequalities for Selfadjoint
Operators in Hilbert Spaces via Two Tominaga's Results
|
75. |
S. S. Dragomir
Tensorial and Hadamard Product Inequalities for Selfadjoint
Operators in Hilbert Spaces Via a Result of Kittaneh and
Manasrah
|
76. |
S. S. Dragomir
Some Tensorial and Hadamard Product Inequalities for
Selfadjoint Operators in Hilbert Spaces in Terms of
Kantorovich Ratio
|
77. |
S. S. Dragomir
Some Tensorial and Hadamard Product Inequalities for
Selfadjoint Operators in Hilbert Spaces Via a
Cartwright-Field Result
|
78. |
S. S. Dragomir
Tensorial and Hadamard Product Inequalities of Schwarz Type
for Selfadjoint Operators in Hilbert Spaces
|
79. |
S. S. Dragomir
Tensorial and Hadamard Product Inequalities for Functions of
Selfadjoint Operators in Hilbert Spaces in Terms of
Kantorovich Ratio
|
80. |
S. S. Dragomir
Tensorial and Hadamard Product Inequalities for Functions of
Selfadjoint Operators in Hilbert Spaces Via a
Cartwright-Field Result
|
81. |
S. S. Dragomir
Some Tensorial and Hadamard Product Inequalities for
Selfadjoint Operators in Hilbert Spaces Via a Log-Reverse of
Young's Result
|
82. |
S. S. Dragomir
Tensorial and Hadamard Product Reverse Inequalities for
Selfadjoint Operators in Hilbert Spaces Related to Young's
Result
|
83. |
S. S. Dragomir
Refinements and Reverses of Tensorial and Hadamard Product
Inequalities for Selfadjoint Operators in Hilbert Spaces
Related to Young's Result
|
84. |
S. S. Dragomir
Tensorial and Hadamard Product Inequalities for Synchronous
Functions of Selfadjoint Operators in Hilbert Spaces
|
85. |
S. S. Dragomir
Some Tensorial and Hadamard Product Inequalities for Convex
Functions of Selfadjoint Operators in Hilbert Spaces
|
86. |
T. Bălan
Super-additivity and Discreteness
|
87. |
L. Ciurdariu
A Variant of Radon's Inequality for Seminorms
|
88. |
L. Ciurdariu
Hermite-Hadamard Type Inequalities Involving Fractional
Integral Operator for Functions Whose Third Derivatives in
Absolute Value are s-Convex
|
89. |
S. S. Dragomir
Tominaga's Type Integral Inequalities for Continuous Fields
of Operators in Hilbert Spaces
|
90. |
S. S. Dragomir
Some Tensorial Hermite-Hadamard Type Inequalities for Convex
Functions of Selfadjoint Operators in Hilbert Spaces
|
91. |
S. S. Dragomir
Refinements and Reverses of Tensorial Hermite-Hadamard Type
Inequalities for Convex Functions of Selfadjoint Operators
in Hilbert Spaces
|
92. |
S. S. Dragomir
Some Tensorial Arithmetic Mean-Geometric Mean Inequalities
for Selfadjoint Operators in Hilbert Spaces
|
93. |
S. S. Dragomir
Refinements and Reverses of Tensorial Arithmetic
Mean-Geometric Mean Inequalities for Selfadjoint Operators
in Hilbert Spaces
|
94. |
S. S. Dragomir
A Reverse of Jensen Tensorial Inequality for Sequences of
Selfadjoint Operators in Hilbert Spaces
|
95. |
S. S. Dragomir
Two New Reverses of Jensen Tensorial Inequality for
Sequences of Selfadjoint Operators in Hilbert Spaces
|
96. |
S. S. Dragomir
Refinements and Reverses of Jensen Tensorial Inequality for
Sequences of Selfadjoint Operators in Hilbert Spaces
|
97. |
S. S. Dragomir
Refinements and Reverses of Jensen Tensorial Inequality for
Twice Differentiable Functions of Selfadjoint Operators in
Hilbert Spaces
|
98. |
G. A. Anastassiou
Fractional Calculus Between Banach Spaces Along with
Ostrowski and Gruss Type Inequalities
|
99. |
G. A. Anastassiou
Sequential Fractional Calculus Between Banach Spaces and
Alternative Ostrowski and Gruss Type Inequalities
|
100. |
G. A. Anastassiou
Abstract Fractional Inequalities Over a Line Segment of a
Banach Space
|
101. |
G. A. Anastassiou
and S. Karateke
Richards Curve Induced Banach Space Valued Ordinary and
Fractional Neural Network Approximation
|
102. |
G. A. Anastassiou
General Sigmoid Based Banach Space Valued Neural Network
Approximation
|
103. |
G. A. Anastassiou
General Sigmoid Based Banach Space Valued Neural Network
Multivariate Approximation
|
104. |
S. S. Dragomir
Some Properties of Tensorial Perspectives for Convex
Functions of Selfadjoint Operators in Hilbert Spaces
|
105. |
S. S. Dragomir
Lower and Upper Bounds for Tensorial Perspectives for Convex
Functions of Selfadjoint Operators in Hilbert Spaces
|
106. |
G. A.
Anastassiou
Multiple General Sigmoids Based Banach Space Valued Neural
Network Multivariate Approximation
|
107. |
G. A.
Anastassiou and S. Karateke
Richard's Curve Induced Banach Space Valued Multivariate
Neural Network Approximation
|
108. |
G. A. Anastassiou
Quantitative Approximation by Multiple Sigmoids
Kantorovich-Shilkret Quasi-interpolation Neural Network
Operators
|
109. |
S. S. Dragomir
An Ostrowski Type Tensorial Norm Inequality for Continuous
Functions of Selfadjoint Operators in Hilbert Spaces
|
110. |
S. S. Dragomir
A Trapezoid Type Tensorial Norm Inequality for Continuous
Functions of Selfadjoint Operators in Hilbert Spaces
|
111. |
S. S. Dragomir
Tensorial Norm Inequalities for Taylor's Expansions of
Functions of Selfadjoint Operators in Hilbert Spaces
(withdrawn by the
author) |
112. |
S. S. Dragomir
Tensorial Upper and Lower Bounds for Taylor's Expansion of
Functions of Selfadjoint Operators in Hilbert Spaces
|
113. |
G. A.
Anastassiou
Hyperbolic Tangent Like Induced Banach Space Valued Neural
Network Approximation
|
114. |
G. A. Anastassiou
Hyperbolic Tangent Like Relied Banach Space Valued Neural
Network Multivariate Approximations
|
115. |
G. A.
Anastassiou
Parametrized Gudermannian Function Induced Banach Space
Valued Ordinary and Fractional Neural Networks
Approximations
|
116. |
G. A.
Anastassiou and S. Karateke
Parametrized Hyperbolic Tangent Induced Banach Space Valued
Ordinary and Fractional Neural Network Approximation
|
117. |
S. S. Dragomir
Tensorial and Hadamard Products Integral Inequalities for
Continuous Fields of Operators in Hilbert Spaces Via
Kantorovich Ration
|
118. |
S. S. Dragomir
Some Tensorial and Hadamard Products Integral Inequalities
for Continuous Fields of Operators in Hilbert Spaces
Via a Cartwright-Field Result
|
119. |
G. A. Anastassiou
and D. Kouloumpou
Brownian Motion Approximation by Neural Networks
|
120. |
G. A.
Anastassiou
Parametrized Gudermannian Function Relied Banach Space
Valued Neural Network Multivariate Approximations
|
121. |
G. A.
Anastassiou
Parametrized Arctangent Sigmoid Function Based Banach Space
Valued Neural Network Approximation
|
122. |
G. A.
Anastassiou and S. Karateke
Parametrized Hyperbolic Tangent Based Banach Space Valued
Multivariate Multi Layer Neural Network Approximations
|
123. |
G. A.
Anastassiou
Parametrized Arctangent Based Banach Space Valued Multi
Layer Neural Network Multivariate Approximations
|
124. |
S. S. Dragomir
Tensorial and Hadamard Products Integral Reverses of Young's
Inequality for Continuous Fields of Operators in
Hilbert Spaces
|
125. |
S. S. Dragomir
Refinements and Reverses of Young's Inequality for Tensorial
and Hadamard Products of Integrals for Continuous Fields
of Operators in Hilbert Spaces (withdrawn by the
author)
|
126. |
S. S. Dragomir
Two Operator Fields Tensorial and Hadamard Products Integral
Reverses of Young's Inequality in Hilbert Spaces
|
127. |
S. S. Dragomir
Tensorial and Hadamard Products Integral Inequalities for
Synchronous Functions of Continuous Fields of
Operators in Hilbert Spaces
|
128. |
S. S. Dragomir
Tensorial and Hadamard Products Integral Inequalities for
Convex Functions of Continuous Fields of Operators in
Hilbert Spaces
|
129. |
G. A. Anastassiou
q-Deformed Hyperbolic Tangent Based Banach Space Valued
Ordinary and Fractional Neural Network Approximations
|
130. |
S. S. Dragomir
Bounds for the Normalized Determinant of Hadamard Product of
Two Positive Operators in Hilbert Spaces
|
131. |
S. S. Dragomir
Some Inequalities for the Normalized Determinant of Hadamard
Product of Two Positive Operators in Hilbert Spaces
|
132. |
S. S. Dragomir
Lower and Upper Bounds for the Normalized Determinant of
Hadamard Product of Two Positive Operators in Hilbert
Spaces
|
133. |
G. A. Anastassiou
q-Deformed Hyperbolic Tangent Relied Banach Space
Valued Multivariate Multi Layer Neural Network Approximation
|
134. |
S. S. Dragomir
Some Bounds for Trace Class P-Determinant of
Hadamard Product of Two Positive Operators in Hilbert Spaces
Via Tominaga's Results
|
135. |
G. A. Anastassiou
q -Deformed and Parametrized Half Hyperbolic Tangent
Based Banach Space Valued Multivariate Multi Layer Neural
Network Approximations
|
136. |
G. A.
Anastassiou and D. Kouloumpou
Approximation of Time Separating Stochastic Process by
Neural Networks
|
137. |
G. A.
Anastassiou
q-Deformed and λ -Parametrized Hyperbolic Tangent
Function Based Banach Space Valued Multivariate Multi Layer
Neural Network Approximations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|