1. |
S. S. Dragomir
Some Determinant Power Inequalities for Positive Definite
Matrices Via Jensen's Inequality for Exponential Functions
|
2. |
N. Faried, M. S.
S. Ali and Z. M. Yehia
On Certain Properties of Sub E-functions
|
3. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Tominaga and Furuichi
Results
|
4. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Some Inequalities in Terms
of Kantorovich Ratio
|
5. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Refinements and Reverses of
Young's Result
|
6. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Jensen and Slater's Results
|
7. |
S. S. Dragomir
New Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Jensen and Slater's Results
|
8. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via One Variable Log
Inequalities
|
9. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Ostrowski Type Results
|
10. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Two Variables Log
Inequalities
|
11. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Two Positive
Operators in Hilbert Spaces
|
12. |
S. S. Dragomir
Reverses of Some Inequalities for the Normalized
Determinants of Sequences of Positive Operators in Hilbert
Spaces
|
13. |
S. S. Dragomir
Refinements and Reverses of Some Inequalities for the
Normalized Determinants of Sequences of Positive Operators
in Hilbert Spaces
|
14. |
G. A. Anastassiou
Algebraic Function Based Banach Space Valued Ordinary and
Fractional Neural Network Approximations
|
15. |
G. A. Anastassiou
Gudermannian Function Activated Banach Space Valued Ordinary
and Fractional Neural Network Approximations
|
16. |
S. S. Dragomir
Some Properties of Trace Class P-Determinant of
Positive Operators in Hilbert Spaces
|
17. |
S. S. Dragomir
Upper and Lower Bounds for Trace Class P-Determinant
of Positive Operators in Hilbert Spaces
|
18. |
S. S. Dragomir
Upper and Lower Bounds for Trace Class P-Determinant
of Positive Operators in Hilbert Spaces Via Kantorovich's
Constant
|
19. |
S. S. Dragomir
On Some Upper and Lower Bounds for Trace Class P-Determinant
of Positive Operators in Hilbert Spaces
|
20. |
S. S. Dragomir
Some Bounds for Trace Class P-Determinant of
Positive Operators in Hilbert Spaces Via Tominaga's Results
|
21. |
S. S. Dragomir
Inequalities for Trace Class P-Determinant of
Positive Operators in Hilbert Spaces Via Ostrowski Type
Results
|
22. |
S. S. Dragomir
Several Bounds for the Trace Class P-Determinant of
Positive Operators in Hilbert Spaces
|
23. |
S. S. Dragomir
Bounds for the Trace Class P-Determinant of Positive
Operators in Hilbert Spaces Via Jensen's Type Inequalities
for Twice Differentiable Functions
|
24. |
S. S. Dragomir
Some Functional Properties for the Normalized Determinant of
Sequences of Positive Operators in Hilbert Spaces
|
25. |
S. S. Dragomir
Some New Inequalities for the Trace Class P-Determinant
of Positive Operators in Hilbert Spaces
|
26. |
S. S. Dragomir
Some Functional Properties for the Trace Class P-Determinant
of Sequences of Positive Operators in Hilbert Spaces
|
27. |
G. A. Anastassiou
Generalized Symmetrical Sigmoid Function Activated Banach
Space Valued Ordinary and Fractional Neural Network
Approximation
|
28. |
S. S. Dragomir
Some Improvements of the Monotonicity Property for the
Normalized Determinant of Positive Operators in
Hilbert Spaces
|
29. |
S. S. Dragomir
The Sub-multiplicative Property for the Normalized
Determinant of Positive Operators in Hilbert Spaces
|
30. |
S. S. Dragomir
Some Improvements of the Monotonicity Property for the Trace
Class P-Determinant of Positive Operators in Hilbert
Spaces
|
31. |
S. S. Dragomir
A Sub-Multiplicative Property for the Trace Class P-Determinant
of Positive Operators in Hilbert Spaces
|
32. |
G. A. Anastassiou
General Multivariate Arctangent Function Activated Neural
Network Approximations
|
33. |
G. A. Anastassiou
Abstract Multivariate Algebraic Function Activated Neural
Network Approximations
|
34. |
G. A. Anastassiou
Abstract Multivariate Gudermannian Function Activated Neural
Network Approximations
|
35. |
G. A. Anastassiou
Generalized Symmetrical Sigmoid Function Activated
Neural Network Multivariate Approximation
|
36. |
S. S. Dragomir
Some Basic Results for the Normalized Entropic Determinant
of Positive Operators in Hilbert Spaces
|
37. |
S. S. Dragomir
Upper and Lower Bounds for the Normalized Entropic
Determinant of Positive Operators in Hilbert Spaces
|
38. |
S. S. Dragomir
Inequalities for the Normalized Entropic Determinant of
Positive Operators in Hilbert Spaces Via Kantorovich
Constant
|
39. |
S. S. Dragomir
Various Bounds for the Normalized Entropic Determinant of
Positive Operators in Hilbert Spaces
|
40. |
S. S. Dragomir
Some Reverse Inequalities for the Normalized Entropic
Determinant of Positive Operators in Hilbert Spaces
|
41. |
S. S. Dragomir
Functional Properties for the Normalized Entropic
Determinant of Sequences of Positive Operators in Hilbert
Spaces
|
42. |
S. S. Dragomir
Inequalities for the Normalized Entropic Determinant of
Positive Operators in Hilbert Spaces
|
43. |
S. S. Dragomir
Refinements and Reverses of Some Inequalities for the
Normalized Entropic Determinant of Positive Operators in
Hilbert Spaces
|
44. |
S. S. Dragomir
A Sub-Multiplicative Property for the Normalized Entropic
Determinant of Sequences of Positive Operators in Hilbert
Spaces
|
45. |
G. A. Anastassiou
Degree of Approximation by Kantorovich-Choquet
Quasi-interpolation Neural Network Operators Revisited
|
46. |
G. A. Anastassiou
Degree of Approximation by Kantorovich-Shilkret
Quasi-interpolation Neural Network Operators Revisited
|
47. |
G. A. Anastassiou
Vector Voronsovkaya Type Asymptotic Expansions for Sigmoid
Functions Induced Quasi-interpolation Neural Network
Operators Revisited
|
48. |
G. A. Anastassiou
Fuzzy Fractional More Sigmoid Function Activated Neural
Network Approximations Revisited
|
49. |
S. S. Dragomir
Some Properties of Trace Class Entropic P-Determinant
of Positive Operators in Hilbert Spaces
|
50. |
S. S. Dragomir
Some Inequalities for Trace Class Entropic P-Determinant
of Positive Operators in Hilbert Spaces
|
51. |
S. S. Dragomir
Bounds for the Entropic Trace Class P-Determinant
of Positive Operators in Hilbert Spaces Via Kantorovich's
Constant
|
52. |
S. S. Dragomir
Inequalities for Trace Class Entropic P-Determinant
of Positive Operators in Hilbert Spaces Via Čebyšev's Type
Results
|
53. |
S. S. Dragomir
Bounds for the Geometric Mean of Trace Class
Entropic P-Determinants of Positive Operators in
Hilbert Spaces
|
54. |
S. S. Dragomir
Several Bounds for the Entropic Trace Class P-Determinant
of Positive Operators in Hilbert Spaces Via Jensen's Type
Inequalities for Twice Differentiable Functions
|
55. |
S. S. Dragomir
Functional Properties for the Entropic Trace Class P-Determinant
of Sequences of Positive Operators in Hilbert Spaces
|
56. |
S. S. Dragomir
A Sub-multiplicative Property for the Entropic Trace
Class P-Determinant of Sequences of Positive
Operators in Hilbert Spaces
|
57. |
G. A. Anastassiou
Multivariate Fuzzy-Random and Stochastic Arctangent,
Algebraic, Gudermannian and Generalized Symmetric Activation
Functions Induced Neural Network Approximations
|
58. |
S. S. Dragomir
Basic Properties of Relative Entropic Normalized Determinant
of Positive Operators in Hilbert Spaces
|
59. |
S. S. Dragomir
Some Bounds for the Relative Entropic Normalized Determinant
of Positive Operators in Hilbert Spaces
|
60. |
S. S. Dragomir
Bounds for the Relative Entropic Normalized Determinant of
Positive Operators in Hilbert Spaces Via Kantorovich
Constant
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|