| 1. |
S. S. Dragomir
Some Determinant Power Inequalities for Positive Definite
Matrices Via Jensen's Inequality for Exponential Functions
|
| 2. |
N. Faried, M. S.
S. Ali and Z. M. Yehia
On Certain Properties of Sub E-functions
|
| 3. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Tominaga and Furuichi
Results
|
| 4. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Some Inequalities in Terms
of Kantorovich Ratio
|
| 5. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Refinements and Reverses of
Young's Result
|
| 6. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Jensen and Slater's Results
|
| 7. |
S. S. Dragomir
New Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Jensen and Slater's Results
|
| 8. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via One Variable Log
Inequalities
|
| 9. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Ostrowski Type Results
|
| 10. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Positive
Operators in Hilbert Spaces Via Two Variables Log
Inequalities
|
| 11. |
S. S. Dragomir
Inequalities for the Normalized Determinant of Two Positive
Operators in Hilbert Spaces
|
| 12. |
S. S. Dragomir
Reverses of Some Inequalities for the Normalized
Determinants of Sequences of Positive Operators in Hilbert
Spaces
|
| 13. |
S. S. Dragomir
Refinements and Reverses of Some Inequalities for the
Normalized Determinants of Sequences of Positive Operators
in Hilbert Spaces
|
| 14. |
G. A. Anastassiou
Algebraic Function Based Banach Space Valued Ordinary and
Fractional Neural Network Approximations
|
| 15. |
G. A. Anastassiou
Gudermannian Function Activated Banach Space Valued Ordinary
and Fractional Neural Network Approximations
|
| 16. |
S. S. Dragomir
Some Properties of Trace Class P-Determinant of
Positive Operators in Hilbert Spaces
|
| 17. |
S. S. Dragomir
Upper and Lower Bounds for Trace Class P-Determinant
of Positive Operators in Hilbert Spaces
|
| 18. |
S. S. Dragomir
Upper and Lower Bounds for Trace Class P-Determinant
of Positive Operators in Hilbert Spaces Via Kantorovich's
Constant
|
| 19. |
S. S. Dragomir
On Some Upper and Lower Bounds for Trace Class P-Determinant
of Positive Operators in Hilbert Spaces
|
| 20. |
S. S. Dragomir
Some Bounds for Trace Class P-Determinant of
Positive Operators in Hilbert Spaces Via Tominaga's Results
|
| 21. |
S. S. Dragomir
Inequalities for Trace Class P-Determinant of
Positive Operators in Hilbert Spaces Via Ostrowski Type
Results
|
| 22. |
S. S. Dragomir
Several Bounds for the Trace Class P-Determinant of
Positive Operators in Hilbert Spaces
|
| 23. |
S. S. Dragomir
Bounds for the Trace Class P-Determinant of Positive
Operators in Hilbert Spaces Via Jensen's Type Inequalities
for Twice Differentiable Functions
|
| 24. |
S. S. Dragomir
Some Functional Properties for the Normalized Determinant of
Sequences of Positive Operators in Hilbert Spaces
|
| 25. |
S. S. Dragomir
Some New Inequalities for the Trace Class P-Determinant
of Positive Operators in Hilbert Spaces
|
| 26. |
S. S. Dragomir
Some Functional Properties for the Trace Class P-Determinant
of Sequences of Positive Operators in Hilbert Spaces
|
| 27. |
G. A. Anastassiou
Generalized Symmetrical Sigmoid Function Activated Banach
Space Valued Ordinary and Fractional Neural Network
Approximation
|
| 28. |
S. S. Dragomir
Some Improvements of the Monotonicity Property for the
Normalized Determinant of Positive Operators in
Hilbert Spaces
|
| 29. |
S. S. Dragomir
The Sub-multiplicative Property for the Normalized
Determinant of Positive Operators in Hilbert
Spaces (withdrawn by
the author)
|
| 30. |
S. S. Dragomir
Some Improvements of the Monotonicity Property for the Trace
Class P-Determinant of Positive Operators in Hilbert
Spaces
|
| 31. |
S. S. Dragomir
A Sub-Multiplicative Property for the Trace Class P-Determinant
of Positive Operators in Hilbert Spaces
|
| 32. |
G. A. Anastassiou
General Multivariate Arctangent Function Activated Neural
Network Approximations
|
| 33. |
G. A. Anastassiou
Abstract Multivariate Algebraic Function Activated Neural
Network Approximations
|
| 34. |
G. A. Anastassiou
Abstract Multivariate Gudermannian Function Activated Neural
Network Approximations
|
| 35. |
G. A. Anastassiou
Generalized Symmetrical Sigmoid Function Activated
Neural Network Multivariate Approximation
|
| 36. |
S. S. Dragomir
Some Basic Results for the Normalized Entropic Determinant
of Positive Operators in Hilbert Spaces
|
| 37. |
S. S. Dragomir
Upper and Lower Bounds for the Normalized Entropic
Determinant of Positive Operators in Hilbert Spaces
|
| 38. |
S. S. Dragomir
Inequalities for the Normalized Entropic Determinant of
Positive Operators in Hilbert Spaces Via Kantorovich
Constant
|
| 39. |
S. S. Dragomir
Various Bounds for the Normalized Entropic Determinant of
Positive Operators in Hilbert Spaces
|
| 40. |
S. S. Dragomir
Some Reverse Inequalities for the Normalized Entropic
Determinant of Positive Operators in Hilbert Spaces
|
| 41. |
S. S. Dragomir
Functional Properties for the Normalized Entropic
Determinant of Sequences of Positive Operators in Hilbert
Spaces
|
| 42. |
S. S. Dragomir
Inequalities for the Normalized Entropic Determinant of
Positive Operators in Hilbert Spaces
|
| 43. |
S. S. Dragomir
Refinements and Reverses of Some Inequalities for the
Normalized Entropic Determinant of Positive Operators in
Hilbert Spaces
|
| 44. |
S. S. Dragomir
A Sub-Multiplicative Property for the Normalized Entropic
Determinant of Sequences of Positive Operators in Hilbert
Spaces
|
| 45. |
G. A. Anastassiou
Degree of Approximation by Kantorovich-Choquet
Quasi-interpolation Neural Network Operators Revisited
|
| 46. |
G. A. Anastassiou
Degree of Approximation by Kantorovich-Shilkret
Quasi-interpolation Neural Network Operators Revisited
|
| 47. |
G. A. Anastassiou
Vector Voronsovkaya Type Asymptotic Expansions for Sigmoid
Functions Induced Quasi-interpolation Neural Network
Operators Revisited
|
| 48. |
G. A. Anastassiou
Fuzzy Fractional More Sigmoid Function Activated Neural
Network Approximations Revisited
|
| 49. |
S. S. Dragomir
Some Properties of Trace Class Entropic P-Determinant
of Positive Operators in Hilbert Spaces
|
| 50. |
S. S. Dragomir
Some Inequalities for Trace Class Entropic P-Determinant
of Positive Operators in Hilbert Spaces
|
| 51. |
S. S. Dragomir
Bounds for the Entropic Trace Class P-Determinant
of Positive Operators in Hilbert Spaces Via Kantorovich's
Constant
|
| 52. |
S. S. Dragomir
Inequalities for Trace Class Entropic P-Determinant
of Positive Operators in Hilbert Spaces Via Čebyšev's Type
Results
|
| 53. |
S. S. Dragomir
Bounds for the Geometric Mean of Trace Class
Entropic P-Determinants of Positive Operators in
Hilbert Spaces
|
| 54. |
S. S. Dragomir
Several Bounds for the Entropic Trace Class P-Determinant
of Positive Operators in Hilbert Spaces Via Jensen's Type
Inequalities for Twice Differentiable Functions
|
| 55. |
S. S. Dragomir
Functional Properties for the Entropic Trace Class P-Determinant
of Sequences of Positive Operators in Hilbert Spaces
|
| 56. |
S. S. Dragomir
A Sub-multiplicative Property for the Entropic Trace
Class P-Determinant of Sequences of Positive
Operators in Hilbert Spaces
|
| 57. |
G. A. Anastassiou
Multivariate Fuzzy-Random and Stochastic Arctangent,
Algebraic, Gudermannian and Generalized Symmetric Activation
Functions Induced Neural Network Approximations
|
| 58. |
S. S. Dragomir
Basic Properties of Relative Entropic Normalized Determinant
of Positive Operators in Hilbert Spaces
|
| 59. |
S. S. Dragomir
Some Bounds for the Relative Entropic Normalized Determinant
of Positive Operators in Hilbert Spaces
|
| 60. |
S. S. Dragomir
Bounds for the Relative Entropic Normalized Determinant of
Positive Operators in Hilbert Spaces Via Kantorovich
Constant
|
| 61. |
S. S. Dragomir
Some Bounds for the Relative Entropic Normalized Determinant
of Positive Operators in Hilbert Spaces
|
| 62. |
S. S. Dragomir
Some Bounds for the Relative Entropic Normalized Determinant
of Positive Operators in Hilbert Spaces Via Ostrowski Type
Inequalities
|
| 63. |
S. S. Dragomir
Quasi Monotonicity for the Relative Entropic Normalized
Determinant of Positive Operators in Hilbert Spaces
|
| 64. |
S. S. Dragomir
A Sub-multiplicative Property for the Relative Entropic
Normalized Determinant of Positive Operators in Hilbert
Spaces
|
| 65. |
S. S. Dragomir
Basic Properties of Relative Entropic Normalized P-Determinant
of Positive Operators in Hilbert Spaces
 |
| 66. |
S. S. Dragomir
Some Inequalities Relative Entropic Normalized P-Determinant
of Positive Operators in Hilbert Spaces
|
| 67. |
S. S. Dragomir
Upper and Lower Bounds for Relative Entropic Normalized P-Determinant
of Positive Operators in Hilbert Spaces in Terms of
Kantorovich Constant
|
| 68. |
S. S. Dragomir
Some Bounds for Relative Entropic Normalized P-Determinant
of Positive Operators in Hilbert Spaces Via Ostrowski's
Inequality
|
| 69. |
S. S. Dragomir
Several Product Inequalities for Relative Entropic
Normalized P-Determinant of Positive Operators in
Hilbert Spaces Via Ostrowski's Inequality
|
| 70. |
S. S. Dragomir
Reverse Inequalities Relative Entropic Normalized P-Determinant
of Positive Operators in Hilbert Spaces
|
| 71. |
S. S. Dragomir
Some Improvements of the Monotonicity Property for Relative
Entropic Normalized P-Determinant of Positive
Operators in Hilbert Spaces
|
| 72. |
S. S. Dragomir
On the Sub-Multiplicative Property for the Relative Entropic
Normalized P-Determinant of Positive Operators in
Hilbert Spaces
|
| 73. |
L. Ciurdariu
Some Hermite-Hadamard Type Inequalities for s-Convex
Functions
|
| 74. |
S. S. Dragomir
Tensorial and Hadamard Product Inequalities for Selfadjoint
Operators in Hilbert Spaces via Two Tominaga's Results
|
| 75. |
S. S. Dragomir
Tensorial and Hadamard Product Inequalities for Selfadjoint
Operators in Hilbert Spaces Via a Result of Kittaneh and
Manasrah
|
| 76. |
S. S. Dragomir
Some Tensorial and Hadamard Product Inequalities for
Selfadjoint Operators in Hilbert Spaces in Terms of
Kantorovich Ratio
|
| 77. |
S. S. Dragomir
Some Tensorial and Hadamard Product Inequalities for
Selfadjoint Operators in Hilbert Spaces Via a
Cartwright-Field Result
|
| 78. |
S. S. Dragomir
Tensorial and Hadamard Product Inequalities of Schwarz Type
for Selfadjoint Operators in Hilbert Spaces
|
| 79. |
S. S. Dragomir
Tensorial and Hadamard Product Inequalities for Functions of
Selfadjoint Operators in Hilbert Spaces in Terms of
Kantorovich Ratio
|
| 80. |
S. S. Dragomir
Tensorial and Hadamard Product Inequalities for Functions of
Selfadjoint Operators in Hilbert Spaces Via a
Cartwright-Field Result
|
| 81. |
S. S. Dragomir
Some Tensorial and Hadamard Product Inequalities for
Selfadjoint Operators in Hilbert Spaces Via a Log-Reverse of
Young's Result
|
| 82. |
S. S. Dragomir
Tensorial and Hadamard Product Reverse Inequalities for
Selfadjoint Operators in Hilbert Spaces Related to Young's
Result
|
| 83. |
S. S. Dragomir
Refinements and Reverses of Tensorial and Hadamard Product
Inequalities for Selfadjoint Operators in Hilbert Spaces
Related to Young's Result
|
| 84. |
S. S. Dragomir
Tensorial and Hadamard Product Inequalities for Synchronous
Functions of Selfadjoint Operators in Hilbert Spaces
|
| 85. |
S. S. Dragomir
Some Tensorial and Hadamard Product Inequalities for Convex
Functions of Selfadjoint Operators in Hilbert Spaces
|
| 86. |
T. Bălan
Super-additivity and Discreteness
|
| 87. |
L. Ciurdariu
A Variant of Radon's Inequality for Seminorms
|
| 88. |
L. Ciurdariu
Hermite-Hadamard Type Inequalities Involving Fractional
Integral Operator for Functions Whose Third Derivatives in
Absolute Value are s-Convex
|
| 89. |
S. S. Dragomir
Tominaga's Type Integral Inequalities for Continuous Fields
of Operators in Hilbert Spaces
|
| 90. |
S. S. Dragomir
Some Tensorial Hermite-Hadamard Type Inequalities for Convex
Functions of Selfadjoint Operators in Hilbert Spaces
|
| 91. |
S. S. Dragomir
Refinements and Reverses of Tensorial Hermite-Hadamard Type
Inequalities for Convex Functions of Selfadjoint Operators
in Hilbert Spaces
|
| 92. |
S. S. Dragomir
Some Tensorial Arithmetic Mean-Geometric Mean Inequalities
for Selfadjoint Operators in Hilbert Spaces
|
| 93. |
S. S. Dragomir
Refinements and Reverses of Tensorial Arithmetic
Mean-Geometric Mean Inequalities for Selfadjoint Operators
in Hilbert Spaces
|
| 94. |
S. S. Dragomir
A Reverse of Jensen Tensorial Inequality for Sequences of
Selfadjoint Operators in Hilbert Spaces
|
| 95. |
S. S. Dragomir
Two New Reverses of Jensen Tensorial Inequality for
Sequences of Selfadjoint Operators in Hilbert Spaces
|
| 96. |
S. S. Dragomir
Refinements and Reverses of Jensen Tensorial Inequality for
Sequences of Selfadjoint Operators in Hilbert Spaces
|
| 97. |
S. S. Dragomir
Refinements and Reverses of Jensen Tensorial Inequality for
Twice Differentiable Functions of Selfadjoint Operators in
Hilbert Spaces
|
| 98. |
G. A. Anastassiou
Fractional Calculus Between Banach Spaces Along with
Ostrowski and Gruss Type Inequalities
|
| 99. |
G. A. Anastassiou
Sequential Fractional Calculus Between Banach Spaces and
Alternative Ostrowski and Gruss Type Inequalities
|
| 100. |
G. A. Anastassiou
Abstract Fractional Inequalities Over a Line Segment of a
Banach Space
|
| 101. |
G. A. Anastassiou
and S. Karateke
Richards Curve Induced Banach Space Valued Ordinary and
Fractional Neural Network Approximation
|
| 102. |
G. A. Anastassiou
General Sigmoid Based Banach Space Valued Neural Network
Approximation
|
| 103. |
G. A. Anastassiou
General Sigmoid Based Banach Space Valued Neural Network
Multivariate Approximation
|
| 104. |
S. S. Dragomir
Some Properties of Tensorial Perspectives for Convex
Functions of Selfadjoint Operators in Hilbert Spaces
|
| 105. |
S. S. Dragomir
Lower and Upper Bounds for Tensorial Perspectives for Convex
Functions of Selfadjoint Operators in Hilbert Spaces
|
| 106. |
G. A.
Anastassiou
Multiple General Sigmoids Based Banach Space Valued Neural
Network Multivariate Approximation
|
| 107. |
G. A.
Anastassiou and S. Karateke
Richard's Curve Induced Banach Space Valued Multivariate
Neural Network Approximation
|
| 108. |
G. A. Anastassiou
Quantitative Approximation by Multiple Sigmoids
Kantorovich-Shilkret Quasi-interpolation Neural Network
Operators
|
| 109. |
S. S. Dragomir
An Ostrowski Type Tensorial Norm Inequality for Continuous
Functions of Selfadjoint Operators in Hilbert Spaces
|
| 110. |
S. S. Dragomir
A Trapezoid Type Tensorial Norm Inequality for Continuous
Functions of Selfadjoint Operators in Hilbert Spaces
|
| 111. |
S. S. Dragomir
Tensorial Norm Inequalities for Taylor's Expansions of
Functions of Selfadjoint Operators in Hilbert Spaces
(withdrawn by the
author) |
| 112. |
S. S. Dragomir
Tensorial Upper and Lower Bounds for Taylor's Expansion of
Functions of Selfadjoint Operators in Hilbert Spaces
|
| 113. |
G. A.
Anastassiou
Hyperbolic Tangent Like Induced Banach Space Valued Neural
Network Approximation
|
| 114. |
G. A. Anastassiou
Hyperbolic Tangent Like Relied Banach Space Valued Neural
Network Multivariate Approximations
|
| 115. |
G. A.
Anastassiou
Parametrized Gudermannian Function Induced Banach Space
Valued Ordinary and Fractional Neural Networks
Approximations
|
| 116. |
G. A.
Anastassiou and S. Karateke
Parametrized Hyperbolic Tangent Induced Banach Space Valued
Ordinary and Fractional Neural Network Approximation
|
| 117. |
S. S. Dragomir
Tensorial and Hadamard Products Integral Inequalities for
Continuous Fields of Operators in Hilbert Spaces Via
Kantorovich Ration
|
| 118. |
S. S. Dragomir
Some Tensorial and Hadamard Products Integral Inequalities
for Continuous Fields of Operators in Hilbert Spaces
Via a Cartwright-Field Result
|
| 119. |
G. A. Anastassiou
and D. Kouloumpou
Brownian Motion Approximation by Neural Networks
|
| 120. |
G. A.
Anastassiou
Parametrized Gudermannian Function Relied Banach Space
Valued Neural Network Multivariate Approximations
|
| 121. |
G. A.
Anastassiou
Parametrized Arctangent Sigmoid Function Based Banach Space
Valued Neural Network Approximation
|
| 122. |
G. A.
Anastassiou and S. Karateke
Parametrized Hyperbolic Tangent Based Banach Space Valued
Multivariate Multi Layer Neural Network Approximations
|
| 123. |
G. A.
Anastassiou
Parametrized Arctangent Based Banach Space Valued Multi
Layer Neural Network Multivariate Approximations
|
| 124. |
S. S. Dragomir
Tensorial and Hadamard Products Integral Reverses of Young's
Inequality for Continuous Fields of Operators in
Hilbert Spaces
|
| 125. |
S. S. Dragomir
Refinements and Reverses of Young's Inequality for Tensorial
and Hadamard Products of Integrals for Continuous Fields
of Operators in Hilbert Spaces (withdrawn by the
author)
|
| 126. |
S. S. Dragomir
Two Operator Fields Tensorial and Hadamard Products Integral
Reverses of Young's Inequality in Hilbert Spaces
|
| 127. |
S. S. Dragomir
Tensorial and Hadamard Products Integral Inequalities for
Synchronous Functions of Continuous Fields of
Operators in Hilbert Spaces
|
| 128. |
S. S. Dragomir
Tensorial and Hadamard Products Integral Inequalities for
Convex Functions of Continuous Fields of Operators in
Hilbert Spaces
|
| 129. |
G. A. Anastassiou
q-Deformed Hyperbolic Tangent Based Banach Space Valued
Ordinary and Fractional Neural Network Approximations
|
| 130. |
S. S. Dragomir
Bounds for the Normalized Determinant of Hadamard Product of
Two Positive Operators in Hilbert Spaces
|
| 131. |
S. S. Dragomir
Some Inequalities for the Normalized Determinant of Hadamard
Product of Two Positive Operators in Hilbert Spaces
|
| 132. |
S. S. Dragomir
Lower and Upper Bounds for the Normalized Determinant of
Hadamard Product of Two Positive Operators in Hilbert
Spaces
|
| 133. |
G. A. Anastassiou
q-Deformed Hyperbolic Tangent Relied Banach Space
Valued Multivariate Multi Layer Neural Network Approximation
|
| 134. |
S. S. Dragomir
Some Bounds for Trace Class P-Determinant of
Hadamard Product of Two Positive Operators in Hilbert Spaces
Via Tominaga's Results
|
| 135. |
G. A. Anastassiou
q -Deformed and Parametrized Half Hyperbolic Tangent
Based Banach Space Valued Multivariate Multi Layer Neural
Network Approximations
|
| 136. |
G. A.
Anastassiou and D. Kouloumpou
Approximation of Time Separating Stochastic Process by
Neural Networks
|
| 137. |
G. A.
Anastassiou
q-Deformed and λ -Parametrized Hyperbolic Tangent
Function Based Banach Space Valued Multivariate Multi Layer
Neural Network Approximations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|